Меню

Agoh осадок какого цвета



Agoh осадок какого цвета

Важнейшие соединения серебра

Соединения этого элемента разнообразны и многочисленны. Некоторые из них неустойчивы к действию света, что, как мы увидим, сыграло исключительно важную роль в развитии материальной культуры человечества.

Оксиды переходных металлов проявляют слабо основные свойства и непосредственно с водой не реагируют. Оксиды серебра не составляют исключение, но прочность гидроксида серебра настолько мала, что в обычных условиях AgOH вообще не существует. Удается обнаружить только следы его присутствия в воде, при взбалтывании порошка оксида Ag2O. Лишь при температуре — 50 °С при смешивании спиртовых растворов щелочи (КОН) и нитрата серебра получают белый осадок AgOH.

Серебро дает прочные соединения с галогенами: AgF, AgCl, AgBr, Agl.

Цвет их углубляется при переходе слеза направо в этом ряду. Фторид и хлорид — белые, бромид — желтоватый, а иодид отчетливо окрашен в желтый цвет. Это обстоятельство указывает на менее прочную связь электронов в бромиде и иодиде, чем в фториде и хлориде. Окраска указывает на поглощение света (видимой части спектра), т. е. на возможность перехода электронов соли на более высокие уровни.

Видимый свет несет небольшую энергию — большинство его квантов не способны поднять прочно связанные электроны на более высокий уровень во фториде и хлориде. Электроны в бромиде и иодиде размещены дальше от ядра (число электронных оболочек в атомах этих галогенов велико), уровни энергии их расположены теснее, и потому энергии кванта видимого света уже достаточно для переноса электрона на «возбужденный» уровень. Часть падающего света поглощается и отраженный имеет «окраску» — вещество кажется нам желтым. При длительном действии света, особенно, конечно, его ультрафиолетовых лучей, все галогениды серебра разлагаются. Кратковременное действие оставляет «следы» в частицах галогенидов серебра, незаметные на глаз, но облегчающие действие восстановителей. На этом явлении основан фотографический процесс.

Растворимость фторида серебра довольно велика —особенно резко выражен контраст между растворимостью фторида и этим же свойством других галогенидов серебра. В литре воды при 20 °С можно растворить 15 моль фторида и лишь одну десятитысячную долю моля хлорида. Растворимость бромида еще меньше (пять десятимиллионных долей моля), а растворимость иодида выражается уже миллиардными долями моля в литре. Заметим, что вообще свойства фтористых соединений своеобразны и резко отличаются от свойств соединений других галогенов. Эта особенность скорее характеризует индивидуальные черты фтора, чем серебра. Фторид серебра хорошо диссоциирует на ионы, чувствителен к ультрафиолетовым лучам и, выделяясь из водных растворов, образует кристаллогидраты с двумя и четырьмя молекулами воды на молекулу соли.

Интересно, что раствор фторида серебра реагирует с порошкообразным металлическим серебром при нагревании. В результате получается: AgF + Ag = Ag2F (субфторид серебра). Он представляет собой кристаллы (зеленоватого цвета), способные проводить электрический ток так же, как его проводят металлы, т. е. без разложения и за счет свободных электронов. Предполагают, что в кристаллах субфторида имеются группы, состоящие из одного иона фтора, зажатого между двумя ионами серебра: Ag + F — Ag + . Между этими группами в кристалле движутся свободные электроны. Каждая группа соответствует, как видно, одному электрону.

Из других галогенидов упомянем о иодиде AgI. Его кристаллическая структура очень похожа на структуру кристаллов льда. Поэтому на частицах иодида серебра легко образуются кристаллы льда из переохлажденного пара. На этой особенности основано использование иодида для ускорения выпадения дождя. Хлорид серебра можно получить обменной реакцией соли серебра и какого-либо хлорида другого металла:

Аналогично получаются и другие галогениды этого металла. К образованию соответствующих галогенидов ведет и прямое взаимодействие галогенов с серебром при нагревании:

Хлорид серебра может быть получен и другими путями. Например, в концентрированных растворах NaCl идет реакция:

В присутствии воздуха в результате этой реакции образуется хлорид серебра.

Из других солей серебра следует назвать нитрат — соль, которая хорошо растворима в воде и является обычным исходным веществом при изучении различных реакций ионов серебра. Нитрат серебра получается при взаимодействии азотной кислоты с металлическим серебром:

Эта реакция характерна для взаимодействий азотной кислоты с металлами переходного типа. Прежде всего проявляется сильно окислительное действие азотной кислоты. Можно схематически представить себе, что первым продуктом взаимодействия металла с кислотой будет оксид- в данном случае Ag2O. Азотная кислота, отдав металлу часть кислорода, образует продукт восстановления кислоты — оксид азота (II). Во второй стадии реакции Оксид реагирует с кислотой, давая соль (нитрат) и воду. Этот процесс с точки зрения электронных представлений можно представить так. Атом серебра отдает электрон: . Атом азота, имеющий степень окисления +5 в азотной кислоте, присоединяет три электрона и приобретает степень окисления . Поэтому на один такой атом необходимо взять в реакции три атома серебра: получившиеся ионы серебра надо еще связать с тремя анионами МО3 — (ведь получается соль AgNO3). Поэтому всего в реакцию входят четыре молекулы кислоты, но лишь одна из них подвергается восстановлению электронами серебра.

Читайте также:  Платья белого цвета что это

Источник

Свойства соединений серебра

1. Оксид серебра (I) – основной оксид, взаимодействующий со всеми кислотами. Он также проявляет некоторые амфотерные свойства, образуя при сплавлении с оксидами щелочных металлов аргенаты состава KAgO.

Способность оксида серебра растворяться в водном аммиаке формально также можно рассматривать как признак амфотерности: Ag2O + 4NH3 + H2O = 2 [ Ag(NH3)2 ](OH). Гидроксид диамминсеребра является растворимым и достаточно сильным основанием.

При нагревании выше 160 о С оксид серебра разлагается, поэтому при термическом разложении большинства солей серебра и кислородосодержащих кислот (нитратов, сульфатов, сульфитов, карбонатов), а также при обжиге сульфида серебра непосредственно получается металлическое серебро.

2. Гидроксид серебра – AgOH – достаточно сильное (КВ=5 . 10 -3 ), но неустойчивое основание, которое при комнатной температуре распадается на оксид и воду. Попытки получить гидроксид серебра по обменной реакции из растворимой соли приведут к выпадению темно-бурого осадка Ag2O: 2AgNO3 + 2KOH = Ag2O + 2KNO3 + H2O

3. Соли серебра. Большинство солей серебра нерастворимы в воде. Растворимы нитрат, ацетат, дигидрофосфат, перхлорат, хлорат и фторид. С другими галогенидами серебро образует характерные осадки, являющиеся качественными реакциями на галогенид-ионы: AgCl – белый творожистый осадок, AgBr – светло-желтый осадок, AgJ – ярко-желтый осадок.

Наименьшее произведение растворимости имеет иодид серебра. Он не растворяется в водном аммиаке, тогда как хлорид серебра дает растворимый хлорид диамминсеребра. Иодид не растворяется и в растворе тиосульфата натрия, а хлорид и бромид растворяются с образованием комплексного иона – дитиосульфатоаргената: AgBr + 2Na2S2O3 = Na3[Ag(S2O3)2] + NaBr . Эту реакцию используют при закреплении фотоматериалов. Все галогениды серебра растворяются в избытке галогенводородных кислот и галогенидов щелочных металлов: AgJ + KJ = K[AgJ2]. Растворение осадков за счет комплексообразования и разрушение комплексных частиц из-за образования малорастворимого соединения являются примерами ионных равновесий в растворах. Направление процесса зависит от соотношения константы нестойкости комплекса и произведения растворимости соли. Например, идет реакция: [Ag(NH3)2]NO3 + KJ = AgJ + 2NH3 + KNO3, но не идет K[Ag(CN)2] + KJ. Комплексы любых катионов металлов с аммиаком, кроме того, разрушаются действием кислот из-за образования катиона аммония. Следует упомянуть, что комплексные частицы, содержащие катион серебра, бесцветны, т.к. имеют заполненный d-подуровень, и переходы электронов под действием энергии квантов света не происходят.

4. Окислительная способность Ag + . Стандартный электронный потенциал Ag + /Ag равен 0,8 В. Из чего следует, что растворимые соли серебра являются сильными окислителями: PH3 + 6AgNO3 + 3H2O = 6Ag + H3PO3 + 6HNO3. Катион диамминсеребра несколько более слабый окислитель, но он способен, например, окислить альдегид до карбоновой кислоты (реакция «серебряного зеркала»): 2[Ag(NH3)2] (OH) + RCOH = RCOONH4 + 2Ag + 3NH3 + H2O.

Источник

Большая Энциклопедия Нефти и Газа

Гидроксид — серебро

Гидроксиды серебра и ртути при комнатной температуре неустойчивы и быстро распадаются на соответствующий оксид и воду. [1]

Гидроксид серебра — амфолит — с сильнее выраженными основными свойствами. [2]

Гидроксиды серебра ( 1) и ртути ( Н) очень неустойчивы и при комнатной температуре спонтанно распадаются на оксиды и воду. [3]

Сколько молекул гидроксида серебра в аммиачном растворе максимально может прореагировать с одной молекулой стреп-тозы. [4]

Аммиак также осаждает гидроксид серебра , которы легко растворяется в избытке аммиака с образование. [5]

Читайте также:  Гарри поттер какого цвета глаза

Какое за-усто чивости гидроксида серебра ( I) можно сделать на основании то объяснить. [6]

Гидроксид диазония получают действием влажного гидроксида серебра на раствор соли диазония. [7]

Выпавший бурый осадок Ag2O ( гидроксид серебра неустойчив и не образуется) разделите на три части. [8]

В щелочной среде образуется осадок гидроксида серебра , который маскирует осадок хлорида серебра. [9]

Полученный прозрачный бесцветный аммиачный раствор гидроксида серебра является реактивом ( см. оп. [10]

Обменной реакцией галогенидов тетраалкиламмония с гидроксидом серебра в спирте или бинарной системе спирт-беизол получают гидроксиды тетраалкиламмония с количественным выходом. [11]

Взаимодействует ли трегалоза с аммиачным раствором гидроксида серебра . [12]

Образование этого оксида обусловлено тем, что гидроксид серебра AgOH существует только в очень разбавленном растворе, при выделении он разлагается. Оксид Ag2O немного растворим в воде ( 0 01 г в 1 л Н20 при 20 С); раствор имеет щелочную реакцию, так как AgOH-сильное основание. Поэтому соли Ag не подвергаются гидролизу. [13]

Образование этого оксида обусловлено тем, что гидроксид серебра AgOlI существует только в очень разбавленном растворе, при выделении он разлагается. С); раствор имеет щелочную реакцию, так как AgOH — сильное основание. Поэтому соли Ag не подвергаются гидролизу. [14]

Полученный раствор, по-видимому, содержит небольшие количества гидроксида серебра ( I) AgOH, который как сильное основание осаждает гидроксиды других металлов. [15]

Источник

Agoh осадок какого цвета

Оксид серебра (I) Ag2O – буро-черные кристаллы с кубической кристаллической решеткой, плотность 7,14 г/см 3 , при 300°С разлагается.

Имеет выраженные основные свойства. В воде плохо растворяется, но придает ей слабощелочную реакцию:

При нагревании до 300°С разлагается на кислород и серебро:

С щелочами не взаимодействует, в водных растворах аммиака образует гидроксид диамминсеребра (I):

В разбавленной серной кислоте растворяется, образуя сульфат серебра (I):

Проявляет окислительные свойства, особенно по отношению к некоторым органическим веществам:

HCHO + 2Ag2O 4Ag + CO2 + H2O.

Оксид серебра (I) получают осторожным нагреванием гидроксида серебра:

Гидроксид серебра (I) AgOH не выделен в индивидуальном виде, это неустойчивое соединение, из растворов не образуется. При взаимодействии солей серебра (I) с щелочами в растворе образуется гидратированный оксид Ag2O·nH2O.

6.8. Обнаружение ионов серебра (I)

Ионы серебра (I) в растворе можно обнаружить при приливании раствора, содержащего хлорид-ионы :

наблюдается выпадение характерного белого творожистого осадка.

Источник

Химия, Биология, подготовка к ГИА и ЕГЭ

Вопросы части С объединяют знание всех тем химии. В случае Задания С2 ЕГЭ по химии — знание всех классов неорганических веществ и их качественных реакции.

Дается конкретный химический эксперимент, ход которого нужно описать химическими реакциями.

Для таких реакции обычно предлагаются какие-то внешние проявления — выделения газа, выпадение осадка или изменение окраски раствора.

Таблица качественных реакций для газов

2) взаимодействие металлов с азотной кислотой (концентрированной)

3) разложение нитратов

Взаимодействие активных металлов с концентрированной серной кислотой:
4Mg + 5H2SO4 = 4MgSO4 + H2S + 4H2O

Газ с резким запахом. Растворимый в воде

2) обменные реакции солей аммония

1) горение азотсодержащих веществ;
2) разложение нитрита аммония:

Газы, поддерживающие горение:
(иногда, для озона — запах свежести);

(для NO2 – бурый цвет)

С + 2NO2 = CO2 + 2NO

Описание Формула 1) взаимодействие серасодежащих веществ с кислородом

2) взаимодействие некоторых металлов с концентрированной серной кислотой

Газ с резким характерным запахом, растворимый в воде
Газ, не поддерживающий горение, малорастворимый в воде, не ядовитый

Таблица качественных реакций для щелочных металлов:

Т.к. все соединения щелочных металлов хорошо растворимы в воде, то их определяют по цвету пламени:

(указан так же цвет пламени некоторых щелочно-земельных металлов)

Таблица качественных реакций

— цвета осадков

Осадки белого цвета

нерастворимый в воде;

нерастворимый в HNO3

качественная реакция на соли серебра;

качественная реакция на хлорид-ионы;

нерастворимый в кислотах

качественная реакция на соли бария;

качественная реакция на сульфат-ионы;

образуется при пропускании газа без цвета с резким запахом через известковую воду;

растворяется при пропускании избытка газа;

растворяется в кислотах

растворение в кислотах:
CaSO3 + 2H + → SO2↑ + H2O + Ca 2+

образуется при добавлении щелочи;

растворяется в избытке щелочи

избыток щелочи : Al(OH)3 + NaOH =Na[Al(OH) 4 ];

  • избыток щелочи: Zn(OH)2 +2NaOH =Na2[Zn(OH)4];
  • образуется при пропускании газа без цвета и запаха через известковую воду;

    растворяется при пропускании избытка газа;

    растворяется в кислотах

    растворение в кислотах:

    Осадок светло-желтого цвета

    (осадок кремового цвета)

    образуется при приливании AgNO3;

    нерастворим в HNO3;

    качественная реакция на бромид-ионы;

    (качественная реакция на соли серебра);

    Осадок желтого цвета

    образуется при приливании AgNO3;

    нерастворим в HNO3;

    качественная реакция на иодид-ионы;

    (качественная реакция на соли серебра);

    Осадок желтого цвета

    образуется при приливании AgNO3;

    растворим в кислотах;

    Осадки коричневых цветов

    Осадок бурого цвета

    образуется при взаимодействии с растворами щелочей;

    качественная реакция на соли железа

    Осадки синих и зеленых цветов

    Осадки зеленого цвета

    Осадок голубого цвета

    (осадок синего цвета)

    образуется при взаимодействии с растворами щелочей

    качественная реакция на соли меди ( II)

    Осадок синего цвета

    образуется при взаимодействии с раствором красной кровяной и желтой кровяной соли

    качественная реакция на соли железа ( II) — с красной кровяной солью;

    качественная реакция на соли железа ( III) — с желтой кровяной солью;

    Осадки черного цвета

    Осадок черного цвета

    Образуется при взаимодействии с сульфидами или с H2S

    качественная реакция на сульфид-ионы

    Еще на эту тему:

    Обсуждение: «Таблицы качественных реакций»

    а какого цвета осадок тетрагидроксоалюмината натрия?

    а это не осадок, это растворимое вещество

    Любой осадок возможно растворим другим веществом. В данной среде вещество ведет себя пассивно от того и осаждается.

    порода, до этого промытая кислотами, была залита мною аптечным йодом и прокипела в нём целую ночь. После остывания была добавлена вода, раствор отстоялся и был декантирован. Раствор представляет собой очень тёмный, чёрно-коричневый золь. В луче фонаря видна мельчайшая, не оседающая, не фильтрующаяся пыль. При добавлении в золь соляной к-ты выпадает красно-коричневый осадок, а раствор светлеет до тёмно красного. В растворе появляется свободный йод обнаруживаемый крахмалом, до прибавления солянки йод не обнаруживался. Так вот, выпавший осадок не растворяется ни в кислотах, ни в щелочах, не реагирует с хлором, растворить его больше ни в чём не получается, на частицы породы уже не похож. Напоминает по цвету осадок смеси гидроксидов железа II и III, однако нерастворим в кислотах. Что это может быть, хотя бы класс соединения узнать? Подскажите пожалуйста.

    напишите хотя бы примерно что за порода…

    Это глинистая порода светло коричневого цвета. После травления указанной породы смесью соляной к-ты с гипохлоритом натрия был получен жёлтый раствор. Раствор был нейтрализован и осаждён гидрокарбонатом натрия, осадок отправлен на спектральный анализ, вот результат в массовых долях:
    13Al 5.420±0.061
    14Si 1.136±0.023
    15P 0.597±0.019
    16S 0.279±0.010
    17Cl 77.974±0.066
    20Ca 5.778±0.014
    22Ti 0.157±0.017
    26Fe 8.506±0.026
    29Cu 0.152±0.002
    Да, результат более чем странный, но ведь лаборатория анализ делала! В общем, эта же порода (поскольку растворилась лишь незначительная, незаметная на глаз её часть) была промыта водой и обработана указанным выше способом. Больше ничего не знаю))) Подскажите хотя бы возможные варианты полученного осадка.

    После обработки смесью гипохлорита и соляной все указанные элементы должны были перейти в раствор. После реакции с гидрокарбонатом могло получиться:
    Al(OH)3, CaCO3, Ca(OH)2, Ti(OH)2, возможно, Ti(OH)CO3, Fe(OH)2, Fe(OH)3, Cu(OH)2, возможно очень небольшие кол-ва карбонатов, хотя, после промывания водой они должны были раствориться

    Дело в том, что полученный раствор после травления солянкой с гипохлоритом был декантирован с породы и только тогда обработан гидрокарбонатом, там действительно могли образоваться указанные вами осадки хоть это и противоречит результатам лаб. анализа. Но не в этом дело. Состав этого раствора я привёл лишь для понимания какие элементы могут там содержаться. Сама порода была промыта водой и затем обработана аптечным йодом, как я писал ранее в первом посте, вот осадок полученный после йода меня интересует.

    Указанные осадки как раз по составу соответствуют анализу, ну да ладно. Смотрите по таблице растворимости, что дает с йодом осадок

    Источник

    Adblock
    detector