Меню

Что такое закаливание у цветов



Закаливание растений.

Морозоустойчивость — не постоянное свойство растений. Она зависит от физиологического состояния растений и условий внешней среды. Растения, выращенные при относительно низких положительных температурах, более устойчивы, чем выращенные при относительно высоких осенних температурах. Свойство морозоустойчивости формируется в процессе онтогенеза растения под влиянием определенных условий среды в соответствии с генотипом растения, связано с резким снижением темпов роста, переходом растения в состояние покоя.

Повышение морозоустойчивости растений тесно связано с закаливанием — постепенной подготовкой растений к воздействию низких зимних температур. Закаливание — это обратимая физиологическая устойчивость к неблагоприятным воздействиям среды.

Способностью к закаливанию обладают не все растения. Растения южного происхождения не способны переносить морозы. Способность к закаливанию у древесных и зимующих травянистых растений северных широт, переживающих значительное понижение температуры в зимний период, в период летней вегетации отсутствует и проявляется только во время наступления осенних пониженных температур (если растение к этому времени прошло необходимый цикл развития). Процесс закалки приурочен лишь к определенным этапам развития растений. Для приобретения способности к закаливанию растения должны закончить процессы роста.

Яровые злаки при озимом посеве по сравнению с озимыми растут при более пониженных положительных температурах, в осенний период почти не снижают темпов роста и не способны к закаливанию. Большую роль в закаливании играют условия внешней среды. Так, на озимых культурах убедительно показана необходимость света для процесса закаливания. Сокращение фотопериода служит для растений сигналом к прекращению роста и стимулом для накопления ингибиторов в растениях. Вероятно, с этих процессов начинается формирование морозоустойчивости у растений.

Растения, выращенные при несоответствующем фотопериоде, не успевают завершить летний рост и не способны к закаливанию. Установлено, что длинный день способствует образованию в листьях черной смородины фитогормонов стимуляторов роста, а короткий — накоплению ингибиторов. В естественных условиях к закаливанию способен лишь организм в целом, при обязательном наличии корневой системы. По-видимому, в корнях вырабатываются вещества, повышающие устойчивость растения к морозу.

Фазы закаливания.

По И. И. Туманову (1979), процесс закаливания растений требует определенного комплекса внешних условий и проходит в две фазы, которым предшествуют замедление роста и переход растений в состояние покоя. Прекращение роста и переход в состояние покоя — необходимые условия прохождения первой фазы закаливания. Однако само по себе оно лишь немного повышает морозоустойчивость растения. У травянистых растений переход в состояние покоя происходит в период первой фазы закаливания. У древесных покой наступает в начале осени, до прохождения первой фазы закаливания.

При переходе в состояние покоя изменяется баланс фитогормонов: уменьшается содержание ауксина и гиббереллинов и увеличивается содержание абсцизовой кислоты, которая, ослабляя и ингибируя ростовые процессы, обусловливает наступление периода покоя. Поэтому обработка растений озимой пшеницы, люцерны и других культур в этот период ингибиторами роста (например, хлорхолинхлоридом — ССС или трииодбензойной кислотой) повышает устойчивость растений к низким температурам.

Первая фаза закаливания проходит на свету и при низких положительных температурах в ночное время (днем около 10 °С, ночью около 2 °С), останавливающих рост, и умеренной влажности почвы. Озимые злаки проходят первую фазу на свету при среднесуточной температуре 0,5-2 °С за 6-9 дней, древесные — за 30 дней. В эту фазу продолжается дальнейшее замедление и даже происходит полная остановка ростовых процессов.

Свет в этой фазе необходим не только для фотосинтеза, но и для поддержания ультраструктур клетки. В таких условиях за счет фотосинтеза образуются сахара, а понижение температуры в ночное время значительно снижает их расход на дыхание и процессы роста. В результате в клетках растений накапливаются сахароза, другие олигосахариды, растворимые белки и т. д., в мембранах возрастает содержание ненасыщенных жирных кислот, снижается точка замерзания цитоплазмы, отмечается некоторое уменьшение внутриклеточной воды.

Благоприятные условия для прохождения первой фазы закаливания озимых растений складываются при солнечной и прохладной (дневная температура до 10 °С) погоде, способствующей накоплению в тканях растений углеводов и других защитных веществ. В естественных условиях оптимальный срок первой фазы закаливания озимых злаков до двух недель. За это время количество сахаров в растениях возрастает до 70 % на сухую массу или до 22 % на сырую массу, т. е. близко содержанию сахаров в корнеплодах лучших сортов сахарной свеклы.

Читайте также:  Какие цвета различают лоси

Растения озимой пшеницы можно закалить и в темноте при 2 °С, если их корни или узлы кущения погрузить в раствор сахарозы. Такие растения выдерживают морозы до -20 °С (И. И. Туманов, 1979). Накапливающиеся в процессе закаливания сахара локализуются в клеточном соке, цитоплазме, клеточных органеллах, особенно в хлоропластах.

Вторая фаза закаливания не требует света и начинается сразу же после первой фазы при температуре немного ниже 0 °С. Для травянистых растений она может протекать и под снегом. Длится она около двух недель при постепенном снижении температуры до -10. -20 °С и ниже со скоростью 2-3 °С в сутки, что приводит к частичной потере воды клетками, освобождению клеток тканей от избыточного содержания воды или витрификации (переходу воды в стеклообразное состояние). Явление витрификации воды в растительных клетках наступает при резком охлаждении (ниже -20 °С). Стеклообразная растительная ткань долго сохраняет свою жизнеспособность.

При постепенном понижении температуры в межклеточниках образуется лед и начинают функционировать механизмы, предохраняющие подготовленные в первой фазе закаливания растения от чрезмерного обезвоживания. Накопившиеся в первой фазе закаливания сахара изменяют устойчивость биоколлоидов цитоплазмы к низким температурам, возрастает относительное количество коллоидно-связанной воды.

Вторая фаза обеспечивает отток из цитозоля клеток почти всей воды, которая может замерзнуть при отрицательной температуре. При критических температурах отток воды из клеток значительно ухудшается, появляется много переохлажденной воды, которая затем замерзает внутри протопласта и может привести к гибели клеток. Следовательно, чем менее морозоустойчиво растение, тем медленнее должна протекать вторая фаза закаливания.

Действующими факторами второй фазы закаливания являются обезвоживание, вызывающее сближение молекул в цитозоле, вязкость которого соответственно увеличивается; низкая температура, уменьшающая тепловое движение молекул в протопласте. В результате во второй фазе закаливания происходит перестройка белков цитоплазмы, накапливаются низкомолекулярные водорастворимые белки, более устойчивые к обезвоживанию, синтезируются специфические белки. Содержание незамерзающей (связанной) воды в тканях зимостойкой пшеницы почти в 3 раза выше по сравнению с незимостойкой.

Перестройка цитоплазмы увеличивает проницаемость ее для воды, способствует более быстрому оттоку воды в межклеточники, что снижает опасность внутриклеточного льдообразования.

Первая фаза закаливания повышает морозоустойчивость растений с -5 до -12 °С, вторая увеличивает морозоустойчивость, например, у пшеницы до -18. -20 °С, у ржи — до -20. -25 °С. Растения, находящиеся в глубоком органическом покое, отличаются способностью к закаливанию и выдерживают промораживание до-195 °С. Так, черная смородина после наступления состояния глубокого покоя и завершения первой фазы закаливания переносила охлаждение до -253 °С.

Не у всех растений процесс закаливания проходит в две фазы. У древесных растений, имеющих в тканях достаточное количество сахаров, сразу же протекают процессы, свойственные второй фазе закаливания. Однако не все растения способны к закаливанию. Теплолюбивые растения (хлопчатник, рис, бахчевые культуры) при длительном пребывании при температурах немного выше 0 °С не только не становятся устойчивыми, но еще сильнее повреждаются или даже погибают, так как в них накапливаются ядовитые вещества, усиливающие губительное действие на растения низких температур.

Источник

Закаливание растений

Гибель растений в результате воздействия температур ниже 0°С зависит от гене­тической природы организма и от тех условий, в которых он находился в пери­од, предшествующий морозам. Так, один и тот же растительный организм может погибнуть при температуре -5°С и перенести температуру до -40. -50°С и даже ниже.

Закаливание — это обратимое физиологическое приспособление к неблаго­приятным воздействиям, происходящее под влиянием определенных внешних условий. Физиологическая природа процесса закаливания к отрицательным температурам была раскрыта благодаря работам И.И. Туманова и его школы. В результате процесса закаливания морозоустойчивость организма резко повы­шается. Способностью к закаливанию обладают не все растительные организ­мы, она зависит от вида растения, его происхождения. Растения южного про­исхождения к закаливанию не способны. У растений северных широт процесс закаливания приурочен лишь к определенным этапам развития. Для приобретения способности к закаливанию растения должны закончить процессы роста. Сигналом к прекращению роста и стимулом для изменений в гормональной системе для растений является сокращение фотопериода и сни­жение температуры. Ослабляется синтез ИУК и гиббереллинов, усиливается об­разование АБК и этилена. Это и приводит к торможению ростовых процессов. Другим условием для приобретения способности к закаливанию является за­вершение оттока веществ. Если в течение лета у древесных растений процессы роста не успели закончиться, то это может вызвать массовую гибель растений зимой. Так, зимняя гибель часто вызывается летней засухой. Засуха приоста­навливает рост летом, не позволяет древесным культурам завершить ростовые процессы к осени. В результате растения оказываются неспособными пройти процессы закаливания и гибнут даже при небольших морозах. Аналогичная кар­тина характерна для растений, выращенных при несоответствующем фотопе­риоде, не успевших завершить летний рост и поэтому неспособных к закалива­нию. Исследования показали, что яровые злаки по сравнению с озимыми рас­тут при более пониженных пониженных температурах, из-за этого в осенний период они почти не снижают темпов роста и не способны к закаливанию. Спо­собность к закаливанию утрачивается весной в связи с началом ростовых про­цессов. Таким образом, устойчивость растений к морозу, способность пройти про­цессы закаливания тесно связаны с резким снижением темпов роста, с перехо­дом растений в покоящееся состояние. Показано, что к закаливанию способен лишь целостный организм, при обязательном наличии корневой системы. Вся­кое нарушение процессов оттока (кольцевание) препятствует закаливанию. Роль корней не сводится только к тому, что туда оттекают продукты обмена, гормо­ны, способствующие ростовым процессам. Важное значение имеет то, что клетки корня вырабатывают вещества, повышающие устойчивость организма против мороза. Собственно процесс закаливания требует комплекса внешних условий и проходит в две фазы.

Читайте также:  Как подобрать цвет шторы для спальни

Первая фаза закаливания проходит на свету при несколько пониженных плю­совых температурах (днем около КГС, ночью около 2°С) и умеренной влажно­сти. В эту фазу продолжается дальнейшее замедление, и даже полная остановка ростовых процессов. Особенное значение в развитии устойчивости растений к морозу в эту фа­зу имеет накопление веществ-криопротекторов, выполняющих защитную функцию: сахарозы, моносахаридов, растворимых белков и др. В этих условиях образование Сахаров в процессе фотосинтеза идет с достаточной интенсивно­стью. Вместе с тем пониженная температура сокращает их трату, как в процессе дыхания, так и в процессах роста. Более морозостойкие виды и сорта характери­зуются большей способностью к накоплению Сахаров именно при пониженной температуре. Показано, что накапливающиеся в процессе закаливания сахара локализуются в разных частях клетки: клеточном соке, цитоплазме, органеллах (особенно хлоропластах). Благодаря такому распределению часть Сахаров прочно удерживается в клетках.

Влияние Сахаров на повышение морозоустойчивости растений многосторон­не. Накапливаясь в клетках, сахара повышают концентрацию клеточного сока, снижают водный потенциал. Чем выше концентрация раствора, тем ниже его точка замерзания, поэтому накопление Сахаров стабилизирует клеточные струк­туры, в частности хлоропласты, благодаря чему они продолжают функциониро­вать. Процесс фотофосфорилирования продолжается даже при отрицательных температурах. Особенное значение имеет защитное влияние сахара на белки, сосредоточенные в поверхностных мембранах клетки. Защитное действие Саха­ров проявляется только в том случае, если происходит при одновременном по­нижении температуры. Имеются данные, что сахара повышают устойчивость именно специфических белков, образующихся при пониженной температуре. В первую фазу закаливания происходит также уменьшение содержания сво­бодной воды. Излишняя влажность почвы (дождливая осень) препятствует про­хождению процесса закаливания. Чем меньше в клетках и тканях содержание воды, тем меньше образуется льда и тем меньше опасность повреждения. В соста­ве мембран возрастает уровень и изменяется структура фосфолипидов.

Повыша­ется содержание ненасыщенных жирных кислот. Это позволяет поддерживать высокую проницаемость мембран, необходимую для транспорта воды. Проис­ходит перестройка ферментных систем процесса дыхания, возрастает альтерна­тивный путь дыхания, что усиливает рассеивание энергии в виде тепла. Влияние света в первую фазу закаливания не ограничивается увеличением накопления Сахаров, помимо этого свет оказывает регуляторное влияние. Это подтверждается тем, что этиолированные растения не способны к закаливанию даже при обогащении их сахарами. В восприятии изменений освещенности важ­ная роль принадлежит фитохрому. Фитохром оказывает влияние на генетиче­ский аппарат клетки и способствует активизации генов, участвующих в переходе в покоящееся состояние. Среди механизмов адаптации к действию пониженных температур — синтез ряда стрессовых белков, к которым относят десатуразы, дегидрины — LEA-белки, а также белки холодового шока — БХШ. Эти гидрофильные бел­ки синтезируются в цитоплазме под действием низких температур и выделя­ются в клеточную стенку. БХШ располагаются на поверхности кристаллов льда, препятствуют их росту, тормозят образование межклеточного льда. БХШ разобщают окислительное фосфорилирование, что позволяет использо­вать энергию окисления на повышение температуры органов растений на 4—7°С выше окружающего воздуха.

Читайте также:  Что обозначает зеленый цвет для детей

В последние годы были изолированы гены, ответственные за синтез БХШ, об­разование которых позволяет переносить низкие температуры. В арабидопсисе идентифицирован ген — гомолог «противоморозного» гена, от которого зависит способность адаптироваться к низким температурам. Показана роль АБК в обра­зовании этих белков. Так, мутанты арабидопсиса, не способные к синтезу АБК, не обладают устойчивостью к низким температурам. Значение АБК подтверждается тем, что при низких температурах возрастание содержания АБК в растении увели­чивает и устойчивость. Например, проростки люцерны переносят температуру до —10°С. Это свойство может быть увеличено путем предварительного выдерживания при 4°С или обработкой АБК, поскольку оба эти способа вызывают синтез БХШ. К концу первой фазы закаливания клетки растений переходят в покоящееся состояние. Происходит процесс обособления цитоплазмы, что, в свою очередь, снижает возможность ее повреждения образующимися в межклетниках кристал­лами льда. Особенно интенсивно перестройка обмена веществ протекает в пе­риод второй фазы закаливания.

Вторая фаза закаливания протекает при дальнейшем понижении температу­ры (около 0°С) и не требует света. В связи с этим для травянистых растений она может протекать и под снегом. В эту фазу происходит отток воды из клеток, а также перестройка структуры протопласта. Продолжается новообразование специфических, устойчивых к обезвоживанию белков. Опыты показали, что в присутствии ингибиторов синтеза белка процесс закаливания не происходит (Т.И. Трунова). Важное значение имеет изменение межмолекулярных связей бел­ков цитоплазмы. При обезвоживании, происходящем под влиянием льдообра­зования, происходит сближение белковых молекул. Связи между ними рвутся и не восстанавливаются в прежнем виде из-за слишком сильного сближения и деформации белковых молекул. В связи с этим большое значение имеет на­личие сульфгидрильных и других гидрофильных группировок, которые способст­вуют удержанию воды и препятствуют сближению молекул белка. Перестройка цитоплазмы способствует увеличению ее проницаемости для воды. Благодаря более быстрому оттоку воды уменьшается опасность внутриклеточного льдооб­разования. Не для всех растений необходимо протекание процессов закалива­ния в две фазы. У древесных растений, обладающих достаточным количеством Сахаров, сразу протекают изменения, соответствующие второй. Таким образом, в процессе закаливания возникает морозоустойчивость, ко­торая определяется рядом изменений. У закаленных растений благодаря высо­кой концентрации клеточного сока, уменьшению содержания воды кристаллы льда образуются не в клетке, а в межклетниках. Количество образовавшегося в межклетниках льда у закаленных растений также значительно меньше.

Изменение свойств белков цитоплазмы приводит к тому, что они становятся более устойчивыми к обезвоживанию. Накопление Сахаров оказывает дополни­тельное защитное влияние. Важное значение имеет повышение устойчивости мембран к обезвоживанию и механическому давлению. Имеются данные, что при закаливании увеличивается количество фосфолипидов и ненасыщенных жирных кислот. Важно отметить, что в клетках закаленных растений накапли­вается АТФ. Чем больше развитие указанных признаков у отдельных видов и сортов растений, тем выше их морозоустойчивость. Морозоустойчивость — ком­плексный признак, запрограммированный генетически, однако он проявляется в определенных условиях среды. Повышение температуры весной сопровожда­ется противоположными изменениями. Поэтому весной растения часто гибнут даже от небольших заморозков. Повышение морозоустойчивости растений имеет большое практическое зна­чение. Для предохранения растений от повреждения морозом важно правильно организовать их питание в осенний период. Усиление фосфорного питания повы­шает устойчивость растений к морозу, тогда как азотные удобрения, способст­вуя процессам роста, делают растения более чувствительными. Благоприятное влияние на морозоустойчивость оказывает обработка такими микроэлементами как цинк, молибден, кобальт. Очень большое значение имеет также выведение морозоустойчивых сортов растений. Делаются попытки создания морозо­устойчивых трансгенных растений путем введения генов, кодирующих ферменты синтеза веществ-криопротекторов, например, пролина и бетаина.

Источник

Adblock
detector