Меню

Для чего цветам нужен фотосинтез



Освещение для растений — все что нужно знать простыми словами.

Большую часть года, света для растений очень мало. И те, кто выращивают их круглогодично в закрытых помещениях, а не по сезонно на улице, сталкиваются из-за этого с большими проблемами.

Единственный выход их решить — это использовать искусственные источники света. Какие из них лучше выбрать и на что ориентироваться?

В первую очередь, рядовой обыватель обращает внимание на уровень потребления электроэнергии. Чем больше у вас будет растений, тем больше потребуется светильников и лампочек для них.

Неохота платить за электричество больше стоимости урожая. Поэтому при покупке светильников, большое внимание уделяют такому параметру как КПД лампочки.

Всем известные лампочки-груши с нитью накаливания, в процессе работы очень сильно нагреваются. Связано это с тем, что в них большая часть эл.энергии преобразуется не в свет, а в бесполезное тепло.

Поэтому постепенно от них начали отказываться и стали переходить на энергосберегающие лампы. Их КПД примерно в 4 раза выше, чем у обычных.

Однако по факту, мы получили те же самые люминесцентные лампы, хоть и меньшего размера, но содержащие ртуть. Если такая лампочка разобьется, вам придется срочно принять меры безопасности и провести так называемую демеркуризацию всего помещения.

Не только сама ртуть, но и ее пары ядовиты для человека. И даже в сверхмалых концентрациях могут вызвать тяжелые последствия.

Поэтому впоследствии им на замену пришли более безопасные светодиодные источники света. А специально для растений были разработаны фитолампы.

У светодиодов также высокий КПД и минимальный нагрев. А самое главное, они по-прежнему совершенствуются и улучшают свои характеристики год от года.

Однако как оказалось, КПД лампочки это не главное в правильном выращивании растений. Самое важное — это их спектр и насколько он отличается от естественного солнечного излучения. Ведь именно к нему привыкли все цветы, овощи, фрукты, ягоды.

Что же прячется за таким научным названием как спектр излучения? Чтобы понять это, придется вспомнить что такое свет? А свет — это не что иное, как электромагнитная волна.

Причем каждый цвет имеет определенную длину волны, отсюда и получается радуга. Однако разная длина означает не только разный цвет, но самое главное — разное количество энергии.

Если все цвета условно представить не в виде привычной прямой линии, а в виде шариков, то синий шарик будет самым большим по размеру. Зеленый поменьше, а красный окажется самым маленьким.

Все цвета всегда упрощают именно до этих трех видов R-G-B:

Почему синий шарик окажется самым объемным? Потому что длина его волны самая маленькая. Она меньше чем у зеленого цвета. А у зеленого в свою очередь, меньше чем у красного.

Читайте также:  Витамины ампулы красного цвета

В итоге и получается, что красный цвет несет в себе меньше энергии, а синий больше всего.

И тут у многих может возникнуть логичный вопрос: «А есть ли разница в том, каким именно спектром освещать растения?» И если есть, можно ли эти знания как-то применить с пользой для дела?

Ведь если какой-то цвет окажется более эффективным, то нет ничего проще, как направить всю энергию на растение только от него. Если синий цвет самый «жирный», достаточно засвечивать растения только им и получать шикарный урожай круглый год.

Однако все оказывается не так просто. Здесь нужно учитывать еще одну характеристику света — его качественный или спектральный состав.

Чтобы понять как отдельные цвета влияют на эффективность фотосинтеза, проводились научные эксперименты. Из целого листа выделялись отдельные чистые хлорофиллы. После чего, в течение длительного времени, их засвечивали светом различного спектра и проверяли результаты.

При этом в первую очередь, смотрели на эффективность поглощения СО2, то есть интенсивность фотосинтеза. Ниже представлен итоговый график такого эксперимента.

Из него видно, что хлорофилл в основном поглощается в синей и красной областях. В зеленой области эффективность минимальна.

Однако на этом не остановились и провели еще один эксперимент. В растениях также содержатся каротиноиды. Они хоть и играют незначительную роль, но и про них забывать не стоит.

Так вот, аналогичный опыт с каротиноидами показал, что ранее выделенные пигменты листа, поглощают в этом случае свет преимущественно в синей области спектра.

Посмотрев на это, все дружно решили что зеленый цвет абсолютно бесполезен и им можно пренебречь. Основной упор все специалисты предлагали делать только на синий и красный свет.

И соответственно более правильным считалось выбирать лампочки, которые излучают именно эти спектры больше всего.

Но как оказалось, изначальная ошибка экспериментаторов закралась в том, что они использовали не весь лист целиком, а выделяли из него пигменты и смотрели результаты только по ним.

На самом деле, в цельном листе свет очень сильно рассеивается. Провели еще опыты, но уже смотрели на весь лист и использовали разные растения. В итоге получили данные, которые более точно показывали насколько эффективно свет поглощается всем листком, а не его отдельными «кусочками».

С одной стороны, здесь опять доминируют синий и красный свет. Отдельные пики потребления фотонов доходят до 90 процентов.

Однако к удивлению многих, и зеленые лучи оказались не столь бесполезны как думали раньше. Дело в том, что благодаря своей проникающей способности, зеленый снабжает энергией более глубокие участки листвы, куда не долетают ни красный, ни синий.

Читайте также:  Ткань рип стоп белого цвета

Таким образом, если полностью отказаться от зеленого, вы можете ненароком погубить растение, и даже не будете понимать в чем причина.

Получается, что все цвета R-G-B нормально усваиваются листьями и нельзя выбрасывать какой-то один из них. Вот только необходимость энергии на разных цветах у разных растений не равноценна.

Для того чтобы объяснить это более наглядно и понятнее, проведем аналогию с чем-то съедобным. Допустим у вас на столе лежит спелый персик, ягода малины и груша.

Для вашего желудка все равно что вы съедите. Он одинаково хорошо переварит все ягоды и фрукты. Но это не означает, что для вас в последствии не будет никакой разницы. Разные продукты все равно по-разному влияют на ваш организм.

Съесть 10 ягод клубники это не то же самое, что 10 груш или персиков. Вы должны найти определенный баланс.

То же самое происходит и со светом для растений. Ваша задача грамотно подобрать, насколько каждого света должно быть в общем спектре. Только таким образом можно рассчитывать на быстрый рост.

Самый главный вопрос — какой свет будет считаться лучшим? Казалось бы, что тут гадать. Лучший вариант это солнечный свет и его близкие аналоги.

Ведь миллионы лет растения именно под ним и развивались. Однако посмотрите на картинку ниже. Вот как реально выглядит интенсивность солнечного света.

Видите, насколько здесь много зеленого. А как мы выяснили ранее, он хоть и полезен, но не в такой степени как другие лучи. Когда говорят, что солнечный свет самый эффективный и нечего отступать от матушки природы, не учитывают один простой факт.

В реальной жизни, а не в экспериментах, растения адаптируются не только к солнечному свету, но также и к условиям окружающей их среды, в которой они произрастают.

Допустим на глубине водоема, где растет какая-то зелень, доминирует синий цвет. А вот в лесу под кроной деревьев, уже победителем выходит зеленый.

А вот по поводу его эффективности в отдельных случаях возникают существенные вопросы. Вот оптимальное распределение спектров для двух самых популярных у нас овощей — огурца и помидора:

Всего на этих двух элементарных примерах между огурцом и томатом хорошо видно, насколько у них разная потребность. И если одной и той же лампочкой засвечивать оба овоща сразу, то результаты будут совершенно непредсказуемыми.

Кроме правильно подобранного спектра, важную роль играет еще два параметра — время и ритм освещения.

Все растения изначально произрастали на улице при естественном солнце. А солнце как известно не висит в зените 24 часа в сутки. Утром всходит, а вечером заходит. То есть естественная интенсивность освещения сначала постепенно растет, а во второй половине дня, достигнув своего пика, начинает падать.

Читайте также:  Как узнать цвет машины лада приора

Это и есть так называемый ритм. И растения его хорошо чувствуют. Измените ритм, не меняя ничего другого, и ваши овощи могут начать болеть, почувствовав себя «не в своей тарелке».

Поэтому опытные садоводы выделили три группы растений — короткого, длинного и нейтрального дня.

Вот их некоторые разновидности:

Длинный день — это когда интенсивность света наблюдается более 13 часов. Короткий — до 12 часов. Растениям для нейтрального дня все равно когда созревать, хоть при коротком, хоть при длинном.

Не будете соблюдать заданный природой цикл и у вас упадет урожайность. Сами растения будут какими-то карликовыми.

Поэтому мало просто купить супер разрекламированные сорта, правильно их высадить, удобрять и поливать.

Как оказывается, еще нужно их правильно освещать. Причем и здесь нет универсального светильника для больших групп растений, везде требуется индивидуальный подход.

Только в этом случае результат вас порадует и вкусом и размером.

Источник

Справочник

Фотосинтез

Фотосинтез — это комплекс сложных реакций, происходящих в зеленых листьях. В процессе фотосинтеза из воды и углекислого газа образуется крахмал. Происходит в зеленых листьях растений с участием специальных органелл листа — хлоропластов, содержащих особый зеленый пигмент хлорофилл.

В процессе фотосинтеза происходит целый ряд химических реакций. Этот процесс можно разделить на 2 фазы: темновую и световую.
Для хода световой фазы необходимо солнце. Солнечный свет падает на листья растений, где его улавливают молекулы хлорофилла. Они получают энергию от света и переходят в возбужденное состояние. Также происходит распад молекул воды на протоны, электроны и кислород. Кислород, образовавшийся после распада воды, выделяется в окружающую среду через устьица.
Далее происходят процессы образования энергетических молекул, необходимых для реакций темновой фазы.

Для хода темновой фазы свет не нужен, она проходит в основном ночью. Здесь все продукты световой фазы, а также специальные энергетические молекулы (АТФ и НАДФ) вступают в сложные химические реакции. Конечный продукт этих реакций — глюкоза, питательное вещество растений. Далее глюкоза преобразуется в более сложное органическое вещество — крахмал, которое и используют растения для своего питания.

Существует несколько видов фотосинтеза, они присущи растениям, произрастающим в разных широтах. Различаются они по типам фиксации углекислого газа и промежуточным продуктам.

Общую схему этого процесса можно представить таким уравнением:
вода+углекислый газ+солнечный свет=углеводы+кислород

Фотосинтез — это важнейший процесс, он составляет энергетическую основу всего живого на планете. В ходе него выделяется кислород, необходимый для дыхания всем живым организмам, а также углеводы — главные источники энергии. Но, что интересно, кислород является лишь побочным продуктом фотосинтеза, а не конечным результатом.

Источник