Меню

Как наш мозг видит цвет



Цветовая палитра мозга

Почему мы видим цвета? Где в нашей голове рождается цвет? В этих вопросах решили разобраться ученые из Китая, опубликовавшие статью в журнале Neuron. Исследователи смогли выяснить, как и где именно происходит восприятие цвета в мозге и чем становится цвет на языке нейронов.

Credit: public domain

Откуда берется цвет? Все мы еще со школьной скамьи знаем, что цвет – это всего лишь отражение светового луча, имеющее определенную частоту волны, от некой поверхности. Отраженный свет попадает на сетчатку глаза, но не весь. Часть света отражается от поверхности, а другая часть – поглощается ей. Поглощенный свет и обуславливает оттенки, которые мы видим.

Простая школьная истина. Но неужели учителя думают, что этого объяснения достаточно? Кажется, что в нем есть большой пробел. Предположим, часть световых лучей отразилась от поверхности и попала на сетчатку. Но ведь, как писал еще в 18-ом веке Исаак Ньютон, видимый спектр электромагнитного излучения – тот самый свет, который мы можем наблюдать – не имеет окраски, он – прозрачный! Откуда же все-таки появляется цвет?

Недавнее исследование, опубликованное в журнале Neuron, пытается раскрыть подробности нейронной организации цветового восприятия. Оказалось, что цвет во многом зависит от активности нейронов нашего мозга. Удивлены?

Путь света в мозге

Давайте попробуем разобраться в том, что происходит в мозге, когда мы видим цвета. Вроде бы ясно, что цвет зависит от длины электромагнитной волны, которая попадает к нам в глаза. Ученые сходятся во мнениях, что восприятие цвета начинается с колбочек сетчатки глаза. Таких колбочек всего три, и они ответственны за разные цвета (следовательно, за разные длины волн): зеленые (средневолновые), синие (коротковолновые), и красные (длинноволновые).

Три колбочки вместе формируют так называемое цветовое пространство. Работая друг с другом, колбочки посылают выходные сигналы в первичную зрительную кору (V1). Однако по пути они проходят ряд других зон мозга, в частности, латеральное коленчатое тело таламуса (LGN – lateral geniculate nucleus). В нейронах коленчатого тела сигналы от колбочек дополняются противоположным цветом, и теперь каждый сигнал может быть представлен в двух вариантах: для синего цвета – синим и желтым, для красного – красным и зеленым (и наоборот). Согласно теории Эвальда Херинга, получить всевозможное сочетание цветов можно именно из таких оппонентных цветов в LGN. Сигналы как бы сравниваются между собой, формируя некоторое соотношение, что и определяет получаемый цвет.

В обыденной жизни аналогом такого соотношения может быть получение коричневого цвета при смешивании зеленого и красного, или получение фиолетового из желтого и синего.

Наличие оппонентных цветов отчасти объясняет феномен пост-изображения. Если вы будете долго смотреть, например, на зеленый круг, то затем, закрыв глаза, вы увидите круг красного цвета на закрытом веке. Кажется, что нейроны, ответственные за зеленый цвет, просто устали и, отдыхая, дают возможность активно поработать нейронам оппонентного цвета.

После того, как в LGN произошло первичное различение цветов, сигнал идет дальше в первичную зрительную кору. В ней ученые смогли различить так называемые цветовые круги. Если присмотреться к фотографии ниже, то можно увидеть, что каждому цвету соответствуют нейроны, располагающиеся под определенным углом от центральной точки.

Credit:D. Fitzpatrick et al.

Однако поздние исследования показали, что подобная теория не может объяснить все. Это лишь первый этап в процессе восприятия цветов. Что же происходит дальше? До сих пор остается непонятным, где именно локализовано осознанное восприятие конкретного цвета.

Исследователи из Китая решили изучить цветовое восприятие не на уровне сетчатки и таламуса, а в глубинах коры головного мозга. Ученые из лаборатории докторов Ванга и Танга применили несколько методик, способных показать активность мозга живой макаки на разных уровнях с разным разрешением и на разных стадиях обработки визуального сигнала в коре: в зонах V1, V2 и V4.

Читайте также:  Каким цветом закрасить осветленный рыжий цвет волос

Цветовое зонирование

Зона V1 — это первичная зрительная кора. В нее приходят зрительные сигналы после их обработки в латеральном коленчатом теле таламуса. Здесь происходит первичный анализ всей информации, которую мы видим. V1 разбирает картинку на множество составляющих: форму, пространственное расположение, цвет, освещенность и так далее. При этом интересно, что активность нейронов V1 повторяет видимое изображение, но переворачивает его, и выглядит примерно так:

Зона V2 – следующий обязательный этап обработки визуальной информации. В ней происходит реконструкция непрерывных контуров изображения, ряд элементов изображения приобретают свою значимость, выстраивается целостная карта визуального восприятия. Считается, что эта зона вовлечена в формирование зрительной памяти.

Зона V4 – это та область, которая ответственна за восприятие цветов. Если V4 не работает, то возникает церебральная ахроматопсия – расстройство, при котором человек не может различать и использовать цветовую информацию.

Как же узнать, где и как локализуется восприятие цвета? Исследователи использовали оптическую визуализацию внутренних сигналов мозга у бодрствующей макаки в зонах V1, V2 и V4, одновременно применив электрофизиологию высокого разрешения и двухфотонную визуализацию.

Оптическая визуализация внутренних сигналов (ISOI) это техника, предназначенная для картирования динамических процессов в одиночных клетках, слоях или даже в целом мозге. Для ее реализации ученые «прорубают» небольшие «окна» в черепе (или максимально уменьшают толщину кости), через которые затем освещают кору мозга светом от 500 до 650 нм. На это освещение реагирует гемоглобин в нейронах: обогащенный кислородом гемоглобин реагирует на более короткую длину волны, обедненный – на более длинную, что видно на камере.

Двухфотонная визуализация – методика, основанная на возбуждении такого вещества как флуорофор, который излучает свет. Флюорофор впитывает 2-3 фотона длинноволновой электромагнитной волны (красные цвета). Если оба фотона впитываются одновременно, то будет происходить излучение света. Энергия фотонов при этом комбинируется, что позволяет инфракрасным фотонам с низкой энергией возбуждать стандартный флюорофор, который вводят в подопытное животное. Инфракрасный свет проходит глубоко в ткани. Из-за низкой энергии инфракрасный свет оказывается менее опасным, что позволяет использовать такую технологию для живых организмов без риска их повредить.

Данные технологии позволили ученым увидеть постепенное увеличение размеров и четкости хромотопических карт (то есть групп нейронов, которые активируются для конкретных цветов). Такие нейроны группируются в одинаковые каплевидные формы, активирующиеся при восприятии конкретных оттенков. При том ясно прослеживается закономерность: восприятие цветов на конце спектра (красный, фиолетовый) уменьшается от зоны V1 к зоне V4 (то есть активность нейронов меньше) и наоборот, цвета из центра спектра (желтый, зеленый) лучше воспроизводятся от зоны V2 к зоне V4. Видимо, на раннем этапе цветового восприятия наш мозг составляет цветовое пространство, на более поздних этапах другие зоны мозга активно пользуются этим пространством, дополняя его.

Видимое излучение изначально не имеет цвета. Колбочки сетчатки могут конвертировать спектральную информацию в нейронные сигналы, которые затем обрабатываются зрительной корой для того, чтобы в конечном итоге появилось восприятие цвета. Как обрабатываются цветовые сигналы на различных уровнях коры – пока неясно.

Тем не менее нейровизуализация смогла показать так называемую «карту оттенков» — организованные структуры, ответственные за различные оттенки. Иными словами, их можно представить как радугу различной формы, разбросанную по поверхности мозга. Используя несколько методов, ученые сформировали и проанализировали карту оттенков для трех последовательных зон зрительного восприятия – V1, V2 и V4.

Credit: Wei Wang et al / Neuron 2020

Кое-что интересное можно увидеть, если внимательно присмотреться к таким «картам оттенков». Во-первых, эти карты становятся больше по своему размеру от зоны V1 к зоне V4. Во-вторых, они по своей форме повторяют друг друга в каждой зоне. В-третьих, большая цветовая однородность и четкость появляется при приближении к зоне V4 – именно благодаря ей мы начинаем осознавать цвета. Двухфотонная нейровизуализация подтвердила, что нейроны в более высоких зонах мозга (например, V2) более специфичны к восприятию оттенков, чем в более низких (например, V1).

Читайте также:  Как узнать характер с помощью цвета

Хочется отметить, что это исследование позволяет сформировать подробное понимание нейропсихологии восприятия цвета, который задействует колбочки сетчатки, проходит через «карты оттенков» в разных зонах мозга и становится осознаваемым в высших структурах мозга. Хочется верить, что результаты данных исследований когда-нибудь расскажут нам, как бороться с различными заболеваниями, которые навсегда обесцвечивают мир человека (ахроматопсия).

Текст: Никита Отставнов

Hierarchical Representation for Chromatic Processing across Macaque V1, V2, and V4 by Ye Liu, Ming Li, Xian Zhang, Niall Mcloughlin, Shiming Tang, Wei Wang in Neuron. Published August 2020

Источник

Лекция 2. Как мы видим и воспринимаем цвет

Лучи света, проходя через зрачок в радужной оболочке и расположенный за ним хрусталик, попадают на сетчатку. Она состоит из двух слоев: наружного, или пигментного, и внутреннего, или нервного, представляет собой разрастание зрительного нерва, связывающего глаз с мозгом. Именно там и возникают зрительные, в том числе цветовые, ощущения.

Наш глаз воспринимает какой-либо цвет как белый, когда все цвета спектра полностью отражаются от освещенной поверхности. Тело или пространство воспринимается черным при отсутствии света. Частичное отражение тех или иных цветовых монохроматических потоков (при поглощении остальных цветов спектра) определяет для нашего зрения цвет отражающей поверхности.

Так, отражение красных лучей создает впечатление красного цвета отражающей поверхности. При этом зеленые, голубые, синие, фиолетовые цвета спектра поглощаются. Глаз человека устроен так, что он прекрасно адаптируется к темноте и свету, к различению предметов на расстоянии, как близком, так и далеком. Хрусталик глаза работает как система автофокусировки фотоаппарата.

Глаз настолько чувствителен к свету, что при абсолютно прозрачной атмосфере мог бы различать огонек свечи на расстоянии 200 км. Глаз здорового человека с развитым цветотоновым зрением способен различать в окружающем мире (при достаточно ярком освещении объектов) около 30 000 оттенков цветов. Многие цветовые атласы содержат в три раза меньшее количество оттенков цветов (даже с учетом того, что в них приводятся образцы одного и того же оттенка цвета — матовые, полуматовые и глянцевые).

Важной особенностью цветового зрения является то, что, определив и запомнив цвет какого-либо объекта, человек, независимо от условий освещения, воспринимает (а точнее, представляет благодаря зрительной цветовой памяти) этот цвет как постоянный, присущий данному объекту. Например, красный цвет, который при слабом освещении объективно видится как темно-красный, серо-красный, коричневато-красный, остается для объекта восприятия все равно красным.

Это помогает человеку запоминать объекты по их цвету и ориентироваться среди них в быту. Но художник, занимаясь живописью, безусловно, отражает в своем произведении (пейзаже, натюрморте, портрете, жанровой картине) реальные изменения цвета изображаемых объектов в зависимости от характера и интенсивности их освещения. Архитекторы, художники декоративно-прикладного искусства, дизайнеры также учитывают в своем творчестве изменения цвета (цветов) создаваемых по их проектам объектов при их реальном восприятии людьми, созерцающими эти объекты в разных условиях освещения.

Трехкомпонентная теория цветового зрения Г. Гельмгольца базируется на идее ученого Томаса Юнга о трех родах нервных волокон, воспринимающих три основные цвета: красный, зеленый и синий (точнее — сине-фиолетовый). Простой желтый значительно возбуждает зрительные волокна, ощущающие красный и зеленый цвета, но слабо — фиолетовые. Простой зеленый сильно возбуждает зеленоощущающие волокна и слабо — остальные два типа и т. д. Тот или иной сложный оттенок цвета зависит, по-видимому, от разной степени возбуждения этих трех типов волокон. А равномерное возбуждение всех типов дает ощущение белого цвета. Цветовая система смешения цветов из трех основных цветовых тонов геометрически изображается в виде равностороннего треугольника, в углах которого обозначены три первичных цвета: красный, зеленый, синий (сине-фиолетовый).

Читайте также:  Шкаф пенал для ванной синего цвета

Аддитивное смешение цветов — метод синтеза цвета , основанный на сложении цветов непосредственно излучающих объектов. Аддитивное смешение соответствует смешению лучей света. Современным стандартом для аддитивного смешения цветов является модель цветового пространства RGB , где основными цветами являются красный ( R ed) , зелёный ( G reen) и синий ( B lue) . Аддитивное смешение по модели RGB используется в компьютерных мониторах и телевизионных экранах, цветное изображение на которых получается из красных, зелёных и синих точек люминофора или светоматрицы. При отсутствии света нет никакого цвета — чёрный , максимальное смешение даёт белый .

Субтрактивное смешение — противоположность аддитивному смешению цветов. Субтрактивное смешение соответствует смешению красок. В этом случае цвет формируется за счёт вычитания определённых цветов из белого света. Тремя типичными базовыми цветами явлются сине-зелёный (Cyan) , маджента (Magenta) и жёлтый (Yellow) . Модель субтрактивного синтеза CMYK (Cyan, Magenta, Yellow, Key color) широко применяется в полиграфии.

Основоположник научного цветоведения И. Ньютон первым предложил реально существующий линейный спектр цветов. Цветовой круг Ньютона включал семь последовательно расположенных и радиально ориентированных секторов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового цветов. При добавлении неспектрального цвета — пурпурного — получалась 8-секторная двухмерная цветовая модель хроматических цветов.

Позднее другими специалистами в области цветоведения на основе цветового круга И. Ньютона (с включением пурпурного цвета) предлагались 12-секторные, 24-секторные и 48-секторные цветовые круги. В качестве стандартного цветового круга принят 24-секторный круг хроматических тонов, образованный путем членения на три каждого из семи основных спектральных цветов и пурпурного цвета.

Известна, помимо двенадцатиричных, также оригинальная десятичная цветовая система — 100-секторный цветовой круг Манселла. В этом круге 10 областей (интервалов). Интервал одного цветового тона включает 11 радиусов цветового тона (от 0 до 10), последний 10-й совпадает с начальным 0-м следующего интервала. По радиусу 5-го цветового тона расположен основной тон каждого интервала, по 10-м радиусам — крайние границы цвета каждого интервала. Шкала насыщенности располагается вдоль радиуса цветового тона. Она имеет определенное число уровней — от наиболее насыщенного цвета на краю круга до наименее насыщенного — к центру круга. Таким образом, цветовой круг (цветовая система) Манселла демонстрирует в широком диапазоне цветность 100 оттенков цветовых тонов: сочетание цветового тона и насыщенности. На основе этой цветовой системы разработаны и выпущены цветовые атласы.

Как и в других стандартизированных системах (содержащих сотни образцов цвета), цвета обозначаются числом, или кодом. В международной практике принят метод определения цвета, разработанный Международной комиссией по освещению (МКО) — Commission International de l’Eclairage. Он основан на том факте, что относительные количества трех стандартных первичных цветов (по Г. Гельмгольцу) — красного, синего и зеленого. График МКО также позволяет осуществлять отбор дополнительных друг к другу цветов и может показать пределы высшей чистоты цветов нефлуоресцирующих пигментов и красителей для сравнения с чистотой (насыщенностью) реально доступных красок.

Позже были разработаны пространственные цветовые модели (трехмерные). Самой первой трехмерной моделью был цветовой шар Отто Рунге. Помимо этой пространственной модели предлагались разными специалистами в области цветоведения и другие модели: цветовой куб Хикетье, многогранник Кюпперса, цветовой цилиндр Манселла, двойной конус Оствальда и т. д.

Источник