Меню

Как светодиод меняет свой цвет



За счет чего светодиоды меняют цвет?

Почему светодиоды, при изменении напряжения, меняют цвет?

Чтобы разобраться, за счет чего, в результате каких факторов внешнего и внутреннего воздействия, светодиоды меняют цвет, необходимо разобраться с общим устройством этого полупроводникового прибора. Оказывается, что изменение цветового спектра при свечении светодиода, независимо от типа и конструкции, происходит в результате изменения параметров напряжения. Оказывается, что под таким воздействием даже самый обыкновенный светодиод (например, оранжевый) изменит цвет по мере увеличения напряжения в сети. Сначала это будет желтый, затем светло-зеленый тон, а далее диод попросту перегорит.

Общий принцип явления

Внутреннее устройство любого полупроводникового диода (и светодиода, в том числе) – это два полупроводника, которые имеют разный уровень проводимости. В первом, электрический ток проходит за счет известного физического явления, обеспечивающего перемещение так называемых «свободных» электронов, а во втором – благодаря перемещению «дырок». Это места, где отсутствуют сами электроны.

На участке цепи, где обеспечено последовательное или параллельное соединение полупроводников, постоянно протекает процесс, называющийся рекомбинация. Электрон занимает положение «дырки», в результате, атом становится нейтральным. И вот в этот самый момент фиксируется излучение фотонов.

Эта излучаемая энергия, это не что иное, как цвет. Он может изменяться с учетом влияния следующих основных факторов:

  1. Тип полупроводника, из которого светодиоды сделаны.
  2. Какой вид примесей используется в месте контакта полупроводников.
  3. Размер запретной зоны по ширине, место, где протекает процесс рекомбинации.
  4. Параметры, величины, влияющие на проявление силы тока на данном участке электрической цепи.

Проще всего воздействовать на светодиод, добиваясь изменения цвета, регулируя величину электрического тока. Добиваются этого путем перемены параметров напряжения. В соответствии с законом Ома увеличение напряжения в цепи приводит к пропорциональному увеличению силы тока. Соответственно, в этот момент энергия фотона будет увеличиваться. Результатом будет перемещение цвета по направлению к холодной, синей части спектра.

Основные принципы формирования цвета с использованием светодиодов

Полезно будет вспомнить, что любой цвет и оттенок, формируется за счет трех основных цветов:

Комбинируя параметры этих трех цветов можно легко получать практически любые оттенки. Главное – правильно подбирать пропорции.

Исходя из этого параметра, чтобы любой световой прибор имел возможность менять цвета и оттенки, он должен иметь не менее трех источников света. Фактически, так оно и есть. Любой RGB-светодиод, это не что иное, как три излучающих кристалла, заключенных в едином корпусе.

Управление и контроль работы такого светодиода осуществляется за счет использования контроллера. Каждый светодиод, меняющий цвет, оснащен таким контроллером. Это устройство управляет каждым отдельным цветом.

Характерные особенности световых эффектов

Выясняя, как за счет рекомбинации дырок и электронов появляется неодинаковое излучение света, в результате чего светодиоды меняют цвет. Это излучение специалисты характеризуют параметрами квантового выхода. Эта величина получается в результате формирования определенного количества выделенных световых фантов.

  • Внутренний. Находится внутри полупроводникового перехода.
  • Внешний. Его место – непосредственно конструкция самого светодиода.

В первом случае теоретически можно обеспечить квантовый выход в параметрах, близких к 100% показателям. Но при одном условии – потребуется создавать экстремально высокие (для данного диода) токи и обеспечить эффективный отвод тепла.

Второй уровень предусматривает рассеивание части света внутри самого источника. Это свечение в основном поглощается элементами конструкции осветительного устройства, в результате снижается общая эффективность излучения.

Читайте также:  Почему у ребенка может быть понос зеленого цвета

RGBW светодиоды

Мы уже отмечали, что для формирования идеально белого цвета, необходимо обеспечить эффективную работу каждого RGB-светодиода, для чего максимально точно отбалансировать яркость свечения по каждому отдельному кристаллу. На практике это сделать достаточно сложно, поэтому, чтобы решить задачу кратчайшим путем, следует дополнить устройство диода кристаллом четвертого свечения. То есть, к красному, синему и зеленому кристаллам, являющимися обязательными компонентами современного диода, добавляется еще один кристалл – белый.

Подведем итог

Очевидно, что в конструкции современного светодиода имеются элементы, позволяющие при определенных условиях менять цвет. Основная причина этого – поведение контроллера, который под воздействием меняющегося напряжения передает соответствующие команды на RGB-светодиод.

Источник

Характеристика RGB светодиода

Подсветка, меняющая свой цвет, выглядит эффектно. Ее применяют для рекламных объектов, декоративного освещения объектов архитектуры, во время различных шоу и массовых мероприятий. Один из способов реализации такой подсветки – применение трехцветных светодиодов.

Что такое RGB-светодиод

Обычные светоизлучающие полупроводниковые приборы имеют один p-n переход в одном корпусе, либо представляют собой матрицу из нескольких одинаковых переходов (COB-технология). Это позволяет в каждый момент времени получить один цвет свечения – непосредственно от рекомбинации основных носителей или от вторичного свечения люминофора. Вторая технология дала разработчикам широкие возможности в выборе цвета свечения, но менять окраску излучения в процессе эксплуатации прибор не может.

RGB светодиод содержит в одном корпусе три p-n перехода с разным цветом свечения:

Аббревиатура из английских названий каждого цвета и дала название этому типу LED.

Виды диодов RGB

Трехцветные светодиоды по способу соединения кристаллов внутри корпуса делятся на три типа:

  • с общим анодом (имеют 4 вывода);
  • с общим катодом (имеют 4 вывода);
  • с раздельными элементами (имеют 6 выводов).

От исполнения LED зависит способ управления прибором.

По типу линзы светодиоды бывают:

  • с прозрачной линзой;
  • с матовой линзой.

Для RGB-элементов с прозрачной линзой для получения смешанных оттенков могут понадобиться дополнительные рассеиватели света. В противном случае могут быть видны отдельные цветовые составляющие.

Принцип работы

Принцип работы RGB-светодиодов основан на смешении цветов. Управляемое зажигание одного, двух или трех элементов позволяет получить различное свечение.

Включение кристаллов по отдельности дает три соответствующих цвета. Попарное включение позволяет достичь свечения:

  • красный+зеленый p-n переходы в итоге дадут желтый цвет;
  • синий+зеленый при смешивании дают бирюзовый;
  • красный+синий позволяют получить фиолетовый.

Включение всех трех элементов позволяет получить белый цвет.

Намного больше возможностей дает смешивание цветов в различных пропорциях. Сделать это можно, раздельно управляя яркостью свечения каждого кристалла. Для этого надо индивидуально регулировать ток, протекающий через светодиоды.

Управление RGB-светодиодом и схема включения

Управляется RGB-светодиод так же, как и обычный LED — приложением прямого напряжения анод-катод и созданием тока через p-n переход. Поэтому подключать трехцветный элемент к источнику питания надо через балластные резисторы – каждый кристалл через свой резистор. Рассчитать его можно через номинальный ток элемента и рабочее напряжение.

Даже при объединении в одном корпусе различные кристаллы могут иметь различные параметры, поэтому параллельно соединять их нельзя.

Типовые характеристики для маломощного трехцветного прибора диаметром 5 мм приведены в таблице.

Красный (R) Зеленый (G) Синий (B)
Максимальное прямое напряжение, В 1,9 3,8 3,8
Номинальный ток, мА 20 20 20

Очевидно, что красный кристалл имеет прямое напряжение в два раза ниже, чем у двух остальных. Параллельное включение элементов приведет к разной яркости свечения или выходу одного или всех p-n переходов из строя.

Читайте также:  Красивые платья белого цвета свадебные

Постоянное подключение к источнику питания не позволяет использовать все возможности RGB-элемента. В статическом режиме трехцветный прибор лишь исполняет функции монохромного, а стоит намного больше обычного LED. Поэтому гораздо интереснее динамический режим, в котором цветом свечения можно управлять. Реализуется это посредством микроконтроллера. Его выводы в большинстве случаев обеспечивают выходной ток в 20 мА, но это каждый раз нужно уточнять в даташите. Подключать LED к портам вывода надо через токоограничивающий резистор. Компромиссный вариант при питании микросхемы от 5 В – сопротивление 220 Ом.

Элементы с общими катодами управляются подачей на выход логической единицы, с общими анодами – логического нуля. Изменить программным способом полярность управляющего сигнала труда не составляет. LED с раздельными выходами можно подключать и управлять любым способом.

Если выходы микроконтроллера не рассчитаны на номинальный ток светодиода, подключать LED надо через транзисторные ключи.

В этих схемах оба типа LED зажигаются подачей положительного уровня на входы ключей.

Упоминалось, что яркостью свечения управляют, изменяя ток через светоизлучающий элемент. Цифровые выводы микроконтроллера напрямую управлять током не могут, потому что имеют два состояния – высокое (соответствующее напряжению питания) и низкое (соответствующее нулевому напряжению). Промежуточных положений не бывает, поэтому для регулировки тока используются другие пути. Например, способ широтно-импульсной модуляции (ШИМ) управляющего сигнала. Его суть состоит в том, что на LED подается не постоянное напряжение, а импульсы определенной частоты. Микроконтроллер в соответствии с программой меняет соотношение импульса и паузы. При этом изменяется среднее напряжение и усредненный ток через светодиод при неизменной амплитуде напряжения.

Существуют специализированные контроллеры, разработанные специально для управления свечением трехцветных LED. Они продаются в виде готового прибора. В них также используется метод ШИМ.

Распиновка

Если имеется новый, не паяный светодиод, то расположение выводов можно определить визуально. Для любого типа соединения (общий анод или общий катод) вывод, подключенный ко всем трем элементам, имеет наибольшую длину. Если повернуть корпус так, что длинная ножка окажется в левой части, то левее его будет находиться «красный» вывод, а в правую сторону – сначала «зеленый», потом «синий». Если LED уже был в употреблении, его выводы могли быть укорочены произвольным образом, и для определения распиновки придется прибегнуть к другим способам:

  1. Можно определить общий провод с помощью мультиметра. Надо включить прибор в режим тестирования диодов и подключить зажимы прибора к предполагаемой общей ножке и к любой другой, потом сменить полярность подключения (как при обычной проверке полупроводникового перехода). Если предполагаемый общий вывод определен правильно, то (при всех трех исправных элементах) в одном направлении тестер покажет бесконечное сопротивление, в другом – конечное (точное значение зависит от типа LED). Если в обоих случаях на дисплее тестера будет сигнал обрыва, значит, вывод выбран неверно, и надо повторить проверку с другой ножкой. Может получиться, что испытательного напряжения мультиметра хватит для зажигания кристалла. В этом случае можно дополнительно убедиться в правильности распиновки по цвету свечения p-n перехода.
  2. Другой способ – подать питание на предполагаемый общий вывод и любую другую ножку светодиода. Если общая точка выбрана правильно, в этом можно убедиться по свечению кристалла.

Важно! При проверке с помощью источника питания надо плавно поднимать напряжение с нуля и не превышать значение 3,5-4 В. Если регулируемого источника нет, можно подключить LED к выходу постоянного напряжения через токоограничивающий резистор.

У светодиодов с раздельными выводами определение распиновки сводится к выяснению полярности и расположения кристаллов по цветам. Сделать это также можно перечисленными методами.

Читайте также:  Лиственное комнатное растение с белыми цветами 1

Плюсы и минусы светодиодов RGB

RGB-светодиодам присущи все достоинства, имеющиеся у полупроводниковых светоизлучающих элементов. Это низкая стоимость, высокая энергоэффективность, долгий срок службы и т.д. Отличительным плюсом трехцветных LED является возможность получения практически любого оттенка свечения простым способом и за небольшую цену, а также смена цвета в динамике.

К основному минусу RGB-светодиодов относят невозможность получения чистого белого цвета за счет смешения трех цветов. Для этого потребуется семь оттенков (в качестве примера можно привести радугу – ее семь цветов являются результатом обратного процесса: разложения видимого света на составляющие). Это накладывает ограничения на использование трехцветных светильников в качестве осветительных элементов. Чтобы несколько компенсировать эту неприятную особенность, при создании светодиодных лент применяется принцип RGBW. На каждый трехцветный LED устанавливается один элемент белого свечения (за счет люминофора). Но стоимость такого осветительного устройства заметно возрастает. Также бывают светодиоды исполнения RGBW. У них в корпусе установлено четыре кристалла – три для получения исходных цветов, четвертый – для получения белого цвета, он излучает свет за счет люминофора.

Срок службы

Период эксплуатации прибора из трех кристаллов определяется временем наработки на отказ самого недолговечного элемента. В данном случае он у всех трех p-n переходов примерно одинаковый. Производители заявляют срок службы RGB-элементов на уровне 25 000-30 000 часов. Но к этой цифре надо относиться осторожно. Заявленное время жизни эквивалентно непрерывной работе в течение 3-4 лет. Вряд ли кто-то из производителей проводил ресурсные испытания (да еще в различных тепловых и электрических режимах) в течение столь долгого периода. За это время появляются новые технологии, испытания надо начинать заново – и так до бесконечности. Гораздо более информативен гарантийный срок эксплуатации. А он составляет 10 000-15 000 часов. Все, что дальше – в лучшем случае математическое моделирование, в худшем – голый маркетинг. Проблема в том, что на распространенные недорогие светодиоды сведения о гарантии производителя, как правило, отсутствуют. Но ориентироваться можно на 10 000-15 000 часов и держать в голове еще приблизительно столько же. А дальше уповать только на везение. И еще один момент – период службы очень сильно зависит от теплового режима во время эксплуатации. Поэтому один и тот же элемент в разных условиях прослужит разное время. Для продления срока жизни LED надо внимательно относиться к проблеме отведения тепла, не пренебрегать радиаторами и создавать условия для естественной циркуляции воздуха, а в некоторых случаях прибегать и к принудительной вентиляции.

Но даже уменьшенные сроки — это несколько лет эксплуатации (ведь LED не будет работать без пауз). Поэтому появление трехцветных светодиодов позволяет дизайнерам широко применять полупроводниковые приборы в их задумках, а инженерам – эти идеи реализовывать «в железе».

Источник