Меню

Красно оранжевый цвет осенних листьев обусловлен пластидами



Физика города: от чего зависит цвет осенних листьев

Иллюстрация: Полина Бреева

Несмотря на снег, осенний окрас деревьев еще хорошо виден. Желтые и красные, оранжевые и коричневые – все листья имеют собственный оттенок. Захотелось разобраться, откуда такая разница в цветах. Наши друзья из Детского центра научных открытий «ИнноПарк» объяснили причину.

Летом листья имеют зеленый цвет из-за большого количества хлорофилла. Этот пигмент – кормилец растения, так как именно с его помощью растение на свету синтезирует из углекислого газа и воды глюкозу, а из нее – все остальные питательные вещества. При наличии освещения хлорофилл в живом листе постоянно разрушается и вновь образуется.

Помимо хлорофилла, листья содержат и другие красители – желтый ксантофилл и оранжевый каротин (тот самый, который в моркови). Летом эти пигменты незаметны, так как замаскированы большим количеством хлорофилла. Осенью жизнедеятельность в листе затухает, и хлорофилл постепенно разрушается. Тут-то и проявляются желтые и оранжевые оттенки.

Осень в московских парках

Разрушение хлорофилла интенсивнее происходит в солнечную погоду. Вот почему в пасмурную дождливую осень листья дольше сохраняют свою зеленую окраску. Но если на смену осадкам приходит бабье лето, то кроны деревьев за пару дней окрашиваются в привычные осенние цвета.

Помимо золотых, к нашим ногам падает много багряных листьев. Они такие из-за пигмента, который называется антоцианом. В отличие от хлорофилла, антоциан не связан с внутриклеточными пластическими образованиями (зернами), а растворен в клеточном соке.

«Москва в цифрах»: чем полезна опавшая листва

При понижении температуры, а также при ярком свете концентрация антоциана в клеточном соке увеличивается. Кроме того, остановка или задержка синтеза питательных веществ в листве также стимулирует его синтез. Таким образом, красный цвет листопада просто свидетельствует о том, что жизненные процессы в листьях прекращаются в преддверии зимы.

Яркость осенних красок зависит от того, какая стоит погода. Если много ливней, листва от избытка воды и недостатка света будет тусклой, невыразительной. Если же холодные ночи чередуются с ясными солнечными днями, то и краски будут под стать погоде – сочными и яркими. Листья на южной стороне дерева тоже всегда будут более насыщенного цвета, поскольку получают больше солнечных лучей.

Наталья Глориозова, Детский центр научных открытий «ИнноПарк»

О «Физике города»

Каждый день, просыпаясь утром, мы погружаемся в город, полный фактур, звуков и красок. Пока мы идем на работу и гуляем в парке, нам в голову приходит миллион вопросов о том, как же все вокруг нас устроено в этом огромном мегаполисе. Почему под нами дрожит земля, когда под нами проезжает поезд метро? И может ли в Москве произойти землетрясение? Какими видят нас люди из космоса?

Мы предложили коллегам из Детского центра научных открытий «ИнноПарк» дать ответы на наши вопросы и разъяснить, сколько велосипедистов нужно для освещения столицы, какие оптические иллюзии можно увидеть в городе и как начать экономить энергию, не выходя из дома. Так появился проект «Физика города». Новые вопросы и новые ответы ищите на нашем сайте по понедельникам и четвергам.

Источник

Пластиды: виды, строение и функции. Хлоропласты, хромопласты, лейкопласты

Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды — лейкопласты;
  • окрашенные — хлоропласты (зеленого цвета);
  • окрашенные — хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.

Строение и функции хлоропластов

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.

Основная функция хлоропласт — фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.

Строение хлоропласта

Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.

Читайте также:  Каким цветом должен быть хиджаб

Сходство молекулы хлорофилла и молекулы гемоглобина

В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.

Строение хромопласта

Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.

Строение лейкопласта

Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Сводная таблица строения и функций пластид

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранная органелла, с гранами и мембранными канальцами Органелла с не развитой внутренней мембранной системой Мелкие органеллы, находятся в частях растения, скрытых от света
Окрас Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Округлая Многоугольная Шаровидная
Функции Фотосинтез Привлечение потенциальных распространителей растений Запас питательных веществ
Заменимость Переходят в хромопласты Не изменяются, это последняя стадия развития пластид Превращаются в хлоропласты и хромопласты

Источник

Научная работа по биологии на тему «Сравнительная характеристика различных типов пластид.». 6 класс.

Сравнительная характеристика различных типов пластид.

Пластиды (греч. Plastido – создающие, образующие и plastos -вылепленный, оформленный) встречаются только у растений. У высших растений пластиды находятся во взрослых вегетативных клетках всех органов — в стебле, листе, корне и цветке. Пластиды — это сравнительно крупные органоиды, значительно крупнее митохондрий, а иногда даже и крупнее ядра, более плотные, чем окружающая их цитоплазма, хорошо видимые в световой микроскоп. Они имеют характерное строение и выполняют различные функции, связанные главным образом с синтезом органических веществ.

Во взрослой растительной клетке в зависимости от окраски, формы и функции различают три основных типа пластид: хлоропласты (пластиды зеленого цвета), хромопласты (пластиды желтого и оранжевого цвета) и лейкопласты (бесцветные пластиды), рис.1. Последние по своему размеру меньше пластид двух предыдущих типов. Совокупность всех пластид в клетке называют пластидоном.

рис.1 Типы пластид.

Таблица основных особенностей пластид.

Чечевицеобразная, дискообразная, линзовидная, шаровидная

Зубчатая, игловидная, пластинчатая

Округлая, яйцевидная или веретеновидная

Надземные органы растений

Лепестки, зрелые плоды, листья

Корни, клубни, семена, листья

Из протопластид, хлоропластов и лейкопластов

Из хлоропластов и лейкопластов

Наиболее изученными и имеющие наибольшее значение среди пластид — хлоропласты . Они содержат зеленый пигмент хлорофилл. Этот пигмент находится в растениях в нескольких формах. Благодаря хлоропластам, точнее благодаря содержащемуся в них хлорофиллу лик земли выглядит зеленым. Среди высших растений хлорофилла нет лишь у некоторых сапрофитов и паразитов, а также у растений при содержании их в полной темноте. Такие растения имеют обычно бледно-желтую окраску. Синтез хлорофилла происходит обычно только на свету, поэтому при содержании растений в темноте они остаются не зелеными и называются этиолированными. В хлоропластах содержатся также и другие пигменты, относящиеся к группе каротиноидов, в частности желтый — ксантофилл и оранжевый — каротин, но обычно они маскируются хлорофиллом, поскольку его значительно больше.

Исключительное значение хлоропластов в том, что в них происходит процесс фотосинтеза. Крахмал, образующийся при фотосинтезе, называется первичным, или ассимиляционным, он откладывается в хлоропластах в виде мелких крахмальных зерен. Для нормального протекания фотосинтеза необходимо присутствие хлорофилла. Хлорофилл — главное действующее начало в осуществлении фотосинтеза. Он поглощает энергию света и направляет ее на совершение фотосинтетических реакций.

В соответствии с их функциями хлоропласты находятся преимущественно в фотосинтезирующих органах и тканях, обращенных к свету — в листьях и молодых стеблях, незрелых плодах. Иногда хлоропласты встречаются даже в корнях, например, в придаточных корнях кукурузы. Но основное их количество сосредоточено в клетках мезофилла (мякоти) листа. В отличие от других органоидов, хлоропласты высших растений характеризуются однообразием и постоянством формы и размеров. Чаще всего они обладают дискообразной или линзовидной формой и когда лежат плашмя, имеют округлые или многоугольные очертания. В этом случае их часто называют также хлорофилловыми зернами. Размер хлоропластов довольно постоянен и даже у разных видов высших растений колеблется в незначительных пределах, составляя в среднем 3—7 мк (толщина 1—3 мк). Более крупные хлоропласты у высших растений встречаются редко. Например, у селагинелл (плауновидных) в клетках кожицы листьев встречаются один-два крупных хлоропласта пластинчатой формы. Величина и форма хлоропластов изменяются в зависимости от внешних условий. У растений тенелюбивых хлоропласты в общем крупнее, чем у светолюбивых, и, как правило, более богаты хлорофиллом. Обычно клетка несет большое количество хлоропластов, и число их сильно меняется; в среднем же в ней насчитывается от 20 до 50 хлоропластов. Особенно богаты хлоропластами листья, а также молодые незрелые плоды. Общее количество хлоропластов в растении может быть громадным; например, во взрослом дереве насчитываются десятки и сотни миллиардов хлоропластов. Число хлоропластов в клетке связано с их величиной. Так, у кукурузы в клетках листьев обычно содержится по нескольку хлоропластов, но у сортов с особенно крупными хлоропластами число их в клетке снижается до двух. У многих низших растений (водорослей) форма, число и размеры хлоропластов весьма разнообразны. Они могут иметь пластинчатую форму (Mougeotia), звездчатую (Zygnema) или быть в виде спиральных лент (Spirogyra) и ребристых цилиндров (Closterium). Такие хлоропласты обычно очень крупны, встречаются в клетке в небольшом количестве (от одного до нескольких) и называются хроматофорами . Но и у водорослей могут встречаться хлоропласты обычной линзовидной формы, и в этом случае число их в клетке обычно велико. В клетках высших растений хлоропласты расположены в постенном слое цитоплазмы. Положение их может меняться в зависимости от внешних условий.

Хлоропласты имеют двумембранную оболочку, которая ограничивает основное вещество пластиды — строму (греч. строма – ложе) от гиалоплазмы (рис.2). У хлоропластов, особенно высших растений, значительно развиты внутренние мембранные поверхности, имеющие форму плоских мешков — тилакоидов (греч. тилакоидес – мешковидный). Часть тилакоидов собраны наподобие стопки в группы, называемые гранами (греч. гранум – зерно). На тилакоидах гран располагаются молекулы хлорофилла, поэтому граны окрашены в зеленый цвет. В строме хлоропластов встречаются пластоглобулы – специфические включения жиров, в которых растворены незеленые пигменты – каратиноиды, есть также нити ДНК, иногда зерна первичного крахмала, белковые кристаллы и структуры. Структура хлоропластов высших растений прекрасно приспособлена к выполнению их главной функции — фотосинтеза. Уже само разделение хлорофиллоносного аппарата на мелкие пластиды означает громадное увеличение активной поверхности. За счет образования мембран и гран эта поверхность увеличивается еще более. Большая активная поверхность и тонкая пространственная ориентация обеспечивают легкий доступ энергии кванта света и возможность переноса этой энергии к химическим системам, участвующим в фотосинтезе. Принцип замкнутых камер — тилакоидов, благодаря пространственному разобщению позволяет одновременно и независимо осуществлять один и тот же комплекс реакций, составляющих фотосинтез. В рибосомах хлоропластов идет синтез белка.

Рис.2

Происхождение и развитие хлоропластов изучено еще очень мало и единой точки зрения по этому вопросу пока не существует. Известно, что в молодых, эмбриональных клетках дифференцированных хлоропластов нет. Вместо них имеются так называемые пропластиды . Это очень мелкие (доли микрона) тельца, находящиеся на грани разрешающей способности светового микроскопа. Первоначально они имеют амебовидную форму (несут лопасти), отграничены от цитоплазмы двойной мембраной и не содержат ни внутренних мембран, ни хлорофилла. Кроме возникновения из пропластид, хлоропласты могут размножаться путем простого деления. При этом из взрослого хлоропласта образуются две дочерние пластиды, часто неравных размеров. Электронномикроскопическая картина такого деления до сих пор не изучена. Структура хлоропласта не остается постоянной, она закономерно изменяется в процессе роста клетки. Изменение структуры хлоропластов с возрастом листьев заметно даже в световой микроскоп. Так, молодым листьям обычно соответствует тонкогранулярная структура, листьям среднего возраста — крупногранулярная структура. В стареющих листьях происходит нарушение структуры и деградация хлоропластов. Однако хлоропласты некоторых клеток могут обнаруживать и высокую стойкость. Так, у деревьев зеленый цвет коры обусловлен наличием слоя клеток с хлоропластами. Эти хлоропласты прекрасно переносят низкие температуры и переходят в активное состояние, обнаруживаемое по сильному позеленению коры, например, у осины, очень рано весной, когда ночью еще бывают сильные морозы. Низкие зимние температуры переносят также хлоропласты листьев (хвои) наших вечнозеленых хвойных деревьев. При этом, как показали электронномикроскопические исследования, они сохраняют свою сложную внутреннюю организацию.

Лейкопласты в отличие от хлоропластов бесцветные пластиды. В световом микроскопе их часто трудно обнаружить, так как они бесцветны и обладают тем же коэффициентом преломления, что и цитоплазма. Это очень нежные органоиды и при приготовлении срезов живого материала разрушаются даже более легко, чем хлоропласты. Они встречаются во взрослых клетках, скрытых от действия солнечного света: в корнях, корневищах, клубнях (картофель), семенах, сердцевине стеблей, а также в клетках, подвергающихся сильному освещению (клетки кожицы). Часто лейкопласты собираются вокруг ядра, окружая его иногда со всех сторон. Форма лейкопластов очень непостоянна, чаще всего это шаровидные, яйцевидные или веретеновидные образования. Лейкопласты — органоиды, связанные с образованием запасных питательных веществ — крахмала, белков и жиров. Деятельность лейкопластов специализирована: одни из них накапливают преимущественно крахмал (амилопласты), другие — белки (протеопласты, называемые также алейронопластами), третьи — масла (олеопласты).

Рис.3

Лейкопласты отличаются от хлоропластов отсутствием развитой ламеллярной системы (рис. 3). Встречаются они в клетках запасающих тканей. Из-за их неопределенной морфологии лейкопласты трудно отличить от пропластид, а иногда и от митохондрий. Они, как и пропластиды, бедны ламеллами, но тем не менее способны к образованию под влиянием света нормальных тилакоидных структур и к приобретению зеленой окраски. В темноте лейкопласты могут накапливать в проламеллярных телах различные запасные вещества, а в строме лейкопластов откладываются зерна вторичного крахмала. Если в хлоропластах откладывается так называемый транзиторный крахмал, который присутствует здесь лишь во время ассимиляции СО 2 , то в лейкопластах может происходить истинное запасание крахмала.

Хромопласты – производные других двух пластид, в большинстве случаев хлоропластов, изредка лейкопластов. Это пластиды желтого или оранжевого и даже красного цвета. Они встречаются в клетках многих лепестков (одуванчик, лютик, калужница), зрелых плодов (томаты, шиповник, рябина, тыква, арбуз, апельсин), корнеплодов (морковь, кормовая свекла). Яркий цвет этих органов обусловлен желтыми и оранжевыми пигментами — каротиноидами, сосредоточенными в хромопластах. Эти пигменты характерны и для хлоропластов, но там они маскируются хлорофиллом. Они не растворимы в воде, но растворимы в жирах. В отличие от хлоропластов форма хромопластов очень изменчива и определяется их происхождением и состоянием в них пигментов, а также систематическим положением образующего их растения.

Рис.4. В отличие от хлоропластов и лейкопластов хромопласты редко возникают непосредственно из пропластид, а обычно представляют собой результат дегенерации хлоропластов. Исключение составляют хромопласты моркови, которые возникают не из хлоропластов, а из лейкопластов или непосредственно из пропластид. Части корнеплода, не погруженные в почву и развивающиеся на свету, обычно зеленеют. Это происходит не в результате превращения хромопластов в хлоропласты, а вследствие образования хлоропластов из пропластид или лейкопластов. Хромопласты вообще не могут превращаться в другие типы пластид. Чаще всего хромопласты образуются при разрушении хлоропластов, когда последние вступают в необратимую фазу развития. При этом в хлоропластах увеличивается содержание жиров и каротиноидов, которые собираются в строме пластиды в виде субмикроскопических глобул, ламеллярные структуры исчезают, а хлорофилл разрушается (рис. 4). Глобулы пигмента растут, а объем стромы уменьшается, в результате глобулы могут заполнить большую часть пластиды. Округлая форма «материнского» хлоропласта при этом сохраняется. Подобный процесс деградации хлоропластов происходит, вероятно, и при осеннем пожелтении листьев и при созревании плодов. Хлорофилл в желтеющих листьях разрушается и перестает маскировать каротиноиды, которые резко выступают и обусловливают желтую окраску листьев. В корнеплодах моркови хромопласты возникают из лейкопластов, вначале крахмалоносных, при этом в строме пластиды накапливаются каротиноиды, которые позже кристаллизуются. Крахмал исчезает по мере того, как растет концентрация каротина, пластидная масса уменьшается и ее становится трудно обнаружить. Выкристаллизовавшийся пигмент составляет преобладающую по объему часть хромопласта, поэтому форма хромопласта в конечном счете определяется формой кристаллизующегося пигмента и бывает обычно неправильной: зубчатой, серповидной, игольчатой или пластинчатой.

Клетка арбуза рис. 5.

На рисунке 5 изображена одна из клеток арбуза с малиновой мякотью при рассматривании в световой микроскоп. В клетке видна цитоплазма, состоящая из тонких нитей, растянутых в различных направлениях. В более массивных тяжах цитоплазмы расположены игольчатые кристаллы пигмента хромопластов. Наибольшее скопление кристаллов наблюдается около ядра. У другого сорта арбуза с мякотью карминного цвета пигмент хромопластов кристаллизуется не только в виде игольчатых кристаллов, но и коротких призмочек различного размера.

Значение хромопластов в обмене веществ выяснено очень мало. Как и лейкопласты, они лишены способности к фотосинтезу, так как не содержат хлорофилла. Косвенное значение хромопластов состоит в том, что они обусловливают яркую окраску цветков и плодов, привлекающую насекомых для перекрестного опыления и других животных — для распространения плодов.

Источник