Меню

От чего зависит цвет тела вещества



Химическая сущность цвета. Факторы, вызывающие окраску химических веществ и влияющие на ее изменение

Определение факторов цвета. Что такое цвет с точки зрения химии? Рассматривать химическую сущность цвета нельзя без знаний физических свойств видимого света. Великому английскому физику И. Ньютону мы обязаны тем, что он объяснил явление разложения белого цвета на совокупность лучей цветового спектра. Каждой длине волны соответствует определенная энергия, которую несут эти волны. Цвет любого вещества определяется длиной волны, энергия которой преобладает в данном излучении. Цвет неба зависит от того, какая часть солнечного света доходит до наших глаз. Лучи с короткой длиной волны (голубые) отражаются от молекул газов воздуха и рассеиваются. Наш глаз воспринимает их и определяет цвет неба – синий, голубой (таблица3.).

То же самое происходит и в случае окрашенных веществ. Если вещество отражает лучи определенной длины волны, то оно окрашено. Если одинаково поглощается или отражается энергия световых волн всего спектра, то вещество кажется черным или белым. Глаз человека содержит оптическую систему: хрусталик и стекловидное тело. В сетчатку глаза входят светочувствительные элементы: колбочки и палочки. Благодаря колбочкам мы различаем цвета.

Таблица 3. Цвет веществ, имеющих одну полосу поглощения в видимой части спектра

Длина волны, полосы поглощения, нм Цвет поглощенного спектра Цвет вещества
400 — 435 Фиолетовый Желто-зеленый
480 — 490 Зеленовато-голубой Оранжевый
500 — 560 Зеленый Красный
580 — 595 Желтый Голубой
595 — 600 Оранжевый Зеленый

Таким образом, то, что мы называем цветом – результат двух физико-химических явлений: взаимодействие света с молекулами вещества и воздействие волн, идущих от вещества, на сетчатку глаз. Итак, первый фактор образования цвета – свет.

Рассмотрим примеры следующего, второго фактора – структуру веществ.

Кристаллическую структуру имеют металлы, у них упорядоченное строение атомов и электронов. Цвет связан с подвижностью электронов. При освещении металлов преобладает отражение, их цвет зависит от длины волны, которую они отражают. Белый блеск обусловлен равномерным отражением почти всего набора видимых лучей. Такой цвет у алюминия, цинка. Золото имеет красновато-желтый цвет, потому что поглощает голубые, синие и фиолетовые лучи. Медь тоже имеет красноватый цвет. Порошок магния – черный, значит это вещество поглощает весь спектр лучей.

Следующий, третий фактор появления цвета – ионное состояние веществ. Цвет зависит и от среды вокруг окрашенных частиц. Катионы и анионы в растворе окружены оболочкой растворителя, который влияет на ионы.

Факторы, влияющие на изменение окраски химических веществ. При проведении простого опыта с добавлением в раствор сока свеклы (малиновый цвет) следующих веществ: уксусной кислоты; раствора щелочи или воды, в результате можно наблюдать изменение цвета свекольного раствора. В первом случае кислая среда приводит к изменению цвета свекольного раствора в пурпурный, во втором опыте щелочная среда изменяет цвет раствора в голубой, а добавление воды (нейтральная среда) не вызывает изменений цвета.

Химикам известен индикатор определения щелочной среды – фенолфталеин. Он изменяет цвет растворов щелочей в малиновый. С изменением цвета железа-иона при окружении его роданидом калия в кровавый цвет связан исторический факт. В 1720 г. политические противники Петра I из духовенства организовали в одном из петербургских соборов «чудо»-икону Богоматери начала проливать слезы, что комментировалось как знак ее неодобрения петровским реформам. Петр I тщательно осмотрел икону и заметил нечто подозрительное: в глазах у образа он нашtл маленькие отверстия. Нашел он и источник слез: это была губка, пропитанная раствором роданида железа, который имеет кроваво-красный цвет. Грузик равномерно надавливал на губку, выдавливая капли через дырочку в иконе. «Вот источник чудесных слез», – сказал государь.

Химические вещества – часть той природы, которая окружает нас со всех сторон. Кровь животных и зелень листьев содержат похожие структуры, но в крови содержатся ионы железа – Fe, а в растениях – Mg. Этим обеспечивается цвет: красный и зеленый. Кстати, изречение «голубая кровь» верно для глубоководных животных, у которых в крови вместо железа содержится ванадий. Также и водоросли, произрастающие в местах, где мало кислорода, имеют синий цвет.

Читайте также:  Что за выделения белого цвета у ребенка

Растения, обладающие хлорофиллом, способны образовывать магнийорганические вещества и используют энергию света. Цвет фотосинтезирующих растений зеленый.

Гемоглобин крови, содержащий железо, служит для переноса кислорода в организме. Гемоглобин с кислородом окрашивает кровь в ярко-красный цвет, а без кислорода придает крови темный цвет.

Необходимо сделать следующие выводы, касающиеся физико-химической природы цвета:

— первый фактор образования цвета – свет;

— второйфактора – химическая структура веществ;

— третий фактор появления цвета – ионное состояние химических веществ, цвет зависит от среды вокруг окрашенных частиц.

4.2. Химия красителей [45].

Гармония цвета является одной из составных частей искусства дизайна. Самыми древними красками служили уголь, мел, глина, киноварь и некоторые соли, такие как ацетат меди (медянка). Краски и красители используются художниками, декораторами и текстильщиками.

Использование первых красящих веществ – неорганических пигментов – началось еще в каменном веке. Первобытные люди использовали окрашенные природные минералы для раскраски тела, различных предметов обихода и одежды. До наших дней дошли прекрасные рисунки в пещерах, пережившие своих создателей на сотни веков. Именно окрашенные минералы вместе с благородными металлами всегда являлись символами власти и богатства людей. С развитием человечества потребность в красителях только росла.

Еще в Х в. до нашей эры, на дне Средиземного моря вблизи города Тира (древняя Финикия) ловили улиток-иглянок. Рабы изо дня в день ныряли за этими улитками в море. Другие рабы выдавливали их, растирали с солью и подвергали дальнейшей переработке, состоявшей из многих операций. Добытое вещество вначале было белым или бледно-желтым, но под действием воздуха и солнечного света постепенно становилось лимонно-желтым, затем зеленым и, наконец, приобретало великолепную фиолетово-красную окраску. Полученный пурпур в течение нескольких веков был самым ценным из всех красителей. Он был тогда символом власти – право носить окрашенные пурпуром одеяния было привилегией правителей и ближайших к ним знатных особ. Окрашивание только одного квадратного метра ткани красителем, добытым таким способом, стоило очень дорого. Ведь для получения одного грамма пурпура нужно было обработать 10 000 улиток!

Изнурительный труд рабов Тира – не единственный в истории пример такого рода. Через несколько сотен лет индиго – фиолетово-синий краситель, добываемый из растения Indigofera tinctiria, стал одним из крупных источников наживы для британской Ост-Индской компании. Корабли Ост-Индской компании ежегодно доставляли во все части света от 6 до 9 миллионов килограммов этого ценного красителя. Раньше им красили паруса, теперь – джинсы.

В наши дни изготовление современных дешевых и в то же время ярких красителей всех цветов и оттенков уже не требует непосильного труда рабов или населения колоний. Их, в том числе пурпур и индиго, производят на химических заводах. Впрочем, пурпур и индиго утратили свою былую славу. Их вытеснили более светопрочные синтетические красители, широким выбором которых мы сегодня располагаем.

Путь к нынешним успехам был открыт благодаря трудам множества ученых-химиков. В 1826, 1840 и 1841 Унфердорбен, Фрицше и Зинин независимо друг от друга получили из индиго анилин. В 1834 г. Рунге обнаружил анилин в каменноугольной смоле, в том же году он открыл фенол и несколько позже – первый краситель из каменноугольной смолы – розоловую кислоту, дающую цвет пурпуру.

В 1856 г. 18-летний химик Перкин, работая во время каникул в своей домашней лаборатории, при неудачной попытке синтезировать хинин неожиданно получил яркий красновато-фиолетовый краситель – мовеин. Вместе с отцом и братом Перкин основал фирму и уже через год организовал производство мовеина в заводском масштабе. Тем самым Перкин положил начало созданию анилинокрасочной промышленности.

В 1868 г. Гребе и Либерманн раскрыли секрет ализарина – красного красителя, добываемого из корней марены. Затем последовали синтезы эозина и других фталеиновых красителей Байером и Каро и расшифровка строения красителей антраценового ряда Э.Фишером и О.Фишером. К концу XIX в. эти достижения увенчались внедрением в промышленность синтеза индиго по методу, разработанному Гейманном и другими химиками.

Велика заслуга немецких химиков в развитии лакокрасочной промышленности. Уже в 1911 г. фирмы Германии экспортировали 22 000 т синтетического индиго. Выпуская одновременно 1500 т дешевого синтетического ализарина, они почти полностью вытеснили природный ализарин, что привело к резкому сокращению разведения марены.

Читайте также:  Подсветка днища автомобиля красным цветом

Почему освещаемые белым светом вещества приобретают тот или иной цвет? Дело в том, что проходя через краситель, свет поглощается, его молекулами. Структура молекул красящих веществ такова, что свет поглощается избирательно. Молекула красителя «выбирает» характерные только для нее составляющие белый свет лучи – линии спектра. Теряя часть цветов, падающий луч окрашивается так называемыми дополнительными цветами (зеленый – красный, желтый – фиолетовый, синий – оранжевый) Например, потеря красного цвета приведет к окрашиванию в зеленый.

От чего зависит спектр поглощения вещества? Перед нами формула красителя относительно простого строения: Его точное химическое название – n,n’-диметиламиноазобензолсульфонат натрия. Это вещество применяется в качестве индикатора, то называли иначе – метиловым оранжевым. Для крашения этот краситель, правда, не годится, так как при добавлении кислоты желтая окраска переходит в красную. Органические красители не случайно имеют сложное строение. Исследования многих химиков позволили установить связь между окраской соединения и его строением. Основу, или ядро, молекулы красителя, как правило, образует кольцевая структура. К ней должны быть присоединены носители цвета – хромофоры. Это всегда ненасыщенные группы:

СН=СН – этиленовая группа;

=С=О – карбонильная группа (оксогруппа, кетогруппа);

Ядро и хромофорные группы вместе образуют окрашенную систему – хромоген. В большинстве случаев наличие только одного хромофора еще не дает окраски. Например, в молекуле оранжевого b-каротина – красителя моркови – содержится 11 двойных связей. Кроме того, цвет зависит от того, как именно хромофоры расположены и связаны между собой. Для усиления цвета, углубления его оттенка и для достижения большей стойкости окрашивания к ядру с хромофором должны быть присоединены дополнительные группы – ауксохромы. К ним относятся, прежде всего, гидроксильная группа ОН и аминогруппа NH2, которые не только влияют на окраску, но и вследствие своего кислого или основного характера повышают сродство красителя к волокну. Современная электронная теория цветности рассматривает цвет как результат взаимодействия со светом электронного облака молекулы красителя. Именно от его параметров, которые определяются наличием хромофорных и ауксохромофорных групп, зависит спектр поглощения молекулы.

Люминофоры. Обычные красители рассеивают поглощенный свет в виде невидимого человеческим глазом инфракрасного излучения. Однако существуют молекулы способные после их возбуждения за счет внешней энергии, возвращаясь обратно в невозбужденное состояние, испускать лучи видимого цвета. Это люминофоры. Энергия необходимая для их свечения может быть химической («фосфоры»), механической («триболюминофоры»), электрической («электролюминофоры») или световой («фотолюминофоры»), а также под действием радиации.

Фосфоресцирующие люминофоры существуют в природе. Свечение может возникать благодаря медленному окислению вещества на воздухе (например, белый фосфор, люциферин в некоторых насекомых, микробах, грибах, рыбах). Такие вещества без доступа окислителя (кислорода воздуха) не светятся. Некоторые вещества могут светиться от трения или встряхивания (например, кристаллический хелидонин, некоторые сульфиды, активированные марганцем и др.). Такое свечение называется триболюминесценцией. Вещества, светящиеся в присутствии радиации или невидимых для глаза лучей рентгена, используются для изготовления составов с постоянным свечением. В качестве радиоактивного вещества используются, например, парафин, в молекулах которого часть атомов обычного водорода (протия) заменена атомами сверхтяжелого радиоактивного водорода (трития). Из-за наличия радиоактивных элементов в составе такие источники видимого света опасны для здоровья. Электролюминофоры широко используются в светотехнике.

Однако в качестве люминофорных красителей используются именно неорганические или органически фотолюминофоры. В зависимости от времени сохранения возбуждения их молекул, люминофоры могут светиться в темноте при времени возбуждения – несколько часов (продается много таких светящихся игрушек), либо при малых временах люминофоры просто окрашиваются в характерный цвет. Особенный интерес представляют такие люминофоры активно поглощающие УФ-излучение. Одежда, подкрашенная такими люминофорами ярко «горит» на солнце. Красная одежда сотрудников МЧС видна за много километров даже в тумане. Люминофорные краски применяют для дорожных указателей и реклам, спасательных лодок. Но есть и неожиданные способы применения таких люминофоров.

Читайте также:  Смесь цветов синий желтый зеленый

Защита от ультрафиолета. В продаже имеется множество средств косметики, предохраняющейчеловека от вредного УФ-излучения, например,кремов от загара. Основными активнымикомпонентами этих средств являются УФ-абсорберы – те самых люминофоры,поглощающие вредное жесткое излучение.

Но защищать от ультрафиолетанужно не только организм человека. УФ-абсорберы – светостабилизаторы –широко используются для защиты полимеров. Примером может служитьТинувин. В невозбужденном состоянии между водородом гидроксильнойгруппы и ближайшим к нему атомом азота образуется стабильная водороднаясвязь. Ее стабильность обусловлена формированием устойчивогошестиугольника. Поглощения кванта УФ-излучения достаточно дляразрушения этого кольца. При его восстановлении излучается энергия, но этоуже не вредный ультрафиолет, а безопасное инфракрасное излучения. (Поверхность всех металлических предметов под воздействием окружающей среды разрушается. Наиболее эффективна их защита цветными пигментами: алюминиевая пудра, цинковая пыль, свинцовый сурик, оксид хрома).

Оптические отбеливатели. Должно быть, каждый из вас обратил внимание на то, что на дискотеке при включении специально подсветки начинают ярко светиться голубым цветом белые рубашки и блузки людей. Лист белой бумаги будет сиять еще ярче. Это означает, что в ткани вашей одежды и в бумагу добавили специальные люминофоры – оптические отбеливатели. Их действие схоже с действием обыкновенной «синьки», которую раньше добавляли в воду при стирке, для отбеливания белья. Сегодня в целях отбеливания в состав стиральных порошков вводят вещества, придающие ткани синеватую флуоресценцию.

Дополнительный к желтому синий цвет «убивает» желтизну ткани. То же самое делает люминофор превращающий УФ-излучение в излучение синего цвета. Одновременно он защищает материала от ультрафиолета.

Люминофор для парниковой пленки. Обычная парниковая полиэтиленовая пленка уже устарела (кстати,«парниковый эффект» связан с тем, что УФ и видимые лучи практически безпотерь проходят через слой полиэтилена,а для тепловых инфракрасных лучей отповерхности почвы полиэтиленнепрозрачен). Появились новыефотопреобразующие пленки, которыесветятся на солнце красным цветом. Егоиспускает специальный люминофор,синтезированный на основе окисловевропия, преобразующий в красный цветзеленое, синее и УФ излучения. Конечно,это очень красиво, не в красоте дело.

Растению на начальной стадии развития для наращивания зеленой массы (листьев) требуется большое количество красного цвета. Именно этой цели служит люминофор. Он имеет сложную структуру, которая обеспечивает ступенчатое преобразование УФ-излучения в требуемый красный цвет. Поэтому количество красного цвета в падающем на листья растений свете увеличивается в несколько раз, что приводит росту урожайности парниковых культур. Правда, когда наступает пора созревания плодов, такую пленку следует заменить на синюю. Она, наоборот, поглощает красные лучи. Листья перестают расти, вся энергия растения направляется на рост плодов.

Потерянная река. Флуоресценция хорошо заметна даже при растворении 1 г радомина 6G в100000 л воды. Способность люминофоров необычайно легко обнаруживатьсяв ничтожно малых концентрациях используют для определения направленияподземных водных течений. Примером может служить решение вопроса об«исчезновении» Дуная. B верховье этой реки, вблизи железнодорожнойстанции Иммединген, большая часть дунайской воды теряется в рыхлыхизвестняковых породах. Чтобы установить направление движения воды в 1877году вблизи этой станции в Дунай высыпали 10 кг флуоресцеина. Через 60часов один из выставленных постов обнаружил в маленькой речушкеотчетливую флуоресценцию. В наше время это свойство люминофоровоказалось очень полезным при экологических проверках утечек и стоковвредных производств. Не забудем и о системе защиты люминофорной печатьюдокументов и, наконец, денежных знаков.

Квантовые точки. Наночастицы люминофоров (квантовые точки), поглощенныемикроорганизмами с питательными средами, позволяют проследить ихперемещение и развитие в живом организме. Избирательное поглощение такихчастиц злокачественными клетками уже сейчасиспользуется для диагностики рака и другихзаболеваний на ранних стадиях.

Кроме описанных выше существует множество интересных красителей. Например, разработаны фотохромные красители, изменяющие цвет при увеличении дозы УФ-излучения, повышении температуры, воздействии электрического поля. Существуют красители, по-разному окрашивающие пленки в отраженном и проходящем свете. Большую статью можно написать об интерференционном окрашивании многослойными перламутровыми пигментами, о голографическом окрашивании, об использовании жидкокристаллических структур, о цифровой печати и многом другом.

Несмотря на то, что основные правила создания хромофорных молекул известны, открытие нового красителя и в наши дни иногда бывает вызвано счастливой случайностью. Технология красящих веществ – это и химия, и физиология, и искусство.

5. Основные закономерности восприятия цвета:

Источник