Сульфид олова (II) — Tin(II) sulfide
- 1314-95-0
Y
- J4580W867H
Y
Цвет играет важную роль в жизни человека
Олова (II) , сульфид представляет собой химическое соединение из олова и серы . Химическая формула — SnS. В природе встречается герценбергит (α-SnS), редкий минерал. При повышенных температурах выше 905 К SnS претерпевает фазовый переход второго рода в β-SnS (пространственная группа: Cmcm, № 63). в последние годы стало очевидно, что существует новый полиморф SnS, основанный на кубической кристаллической системе, известный как π-SnS (пространственная группа: P2 1 3, № 198).
Сульфид олова (II) можно получить реакцией олова с серой или хлорида олова (II) с сероводородом .
Sn + S → SnS SnCl 2 + H 2 S → SnS + 2 HCl
Сульфид олова (II) представляет собой твердое вещество темно-коричневого или черного цвета, не растворимое в воде, но растворимое в концентрированной соляной кислоте . Сульфид олова (II) не растворяется в (NH 4 ) 2 S. Он имеет слоистую структуру, аналогичную структуре черного фосфора. Что касается черного фосфора, сульфид олова (II) может расслаиваться ультразвуком в жидкостях для получения атомарно тонких полупроводниковых листов SnS, которые имеют более широкую оптическую запрещенную зону (> 1,5 эВ) по сравнению с массивным кристаллом.
Сульфид олова (II) — интересный потенциальный кандидат для тонкопленочных солнечных элементов следующего поколения . В настоящее время как теллурид кадмия , так и CIGS ( селенид меди, индия, галлия ) используются в качестве абсорбирующих слоев p-типа, но в их состав входят токсичные, дефицитные компоненты. Сульфид олова (II), напротив, образуется из дешевых, богатых землей элементов и нетоксичен. Этот материал также имеет высокий коэффициент оптического поглощения, проводимость p-типа и прямую запрещенную зону в среднем диапазоне 1,3–1,4 эВ, необходимые электронные свойства для этого типа слоя поглотителя. Основываясь на подробном расчете баланса с использованием ширины запрещенной зоны материала, эффективность преобразования энергии солнечного элемента, использующего слой поглотителя сульфида олова (II), может достигать 32%, что сопоставимо с кристаллическим кремнием. Наконец, сульфид олова (II) устойчив как в щелочных, так и в кислых условиях. Все вышеупомянутые характеристики указывают на то, что сульфид олова (II) является интересным материалом для использования в качестве слоя поглотителя солнечных элементов.
В настоящее время тонкие пленки сульфида олова (II) для использования в фотоэлектрических элементах все еще находятся на стадии исследований, при этом эффективность преобразования энергии в настоящее время составляет менее 5%. Барьеры для использования включают низкое напряжение холостого хода и невозможность реализовать многие из вышеупомянутых свойств из-за проблем при изготовлении, но сульфид олова (II) по-прежнему остается многообещающим материалом, если эти технические проблемы будут преодолены.
Источник
Моносульфид олова — нестехиометрическое соединение, где 0 −2 ат.% серы.
Существует в двух модификациях α и β, температура перехода α→β 605 °C, ΔH перехода α→β 0,7 кДж/моль.
ΔG образования (α-SnS): −108 кДж/моль.
ΔH возгонки 220 кДж/моль; сублимируется без разложения. Уравнение температурной зависимости давления пара: lg p(Па) = −10600/T + 12,27.
Полупроводник обычно p-типа, эффективная масса дырок вдоль осей а, b, с: Mа = Mb = 0,2 me, Mс = 1,0 me (me — масса свободного электрона); температурный коэффициент ΔE: −4,8·10 −4 К −1 .
Нерастворим в воде и разбавленных минеральных кислотах, растворяется с разложением в концентрированных серной и азотной кислотах, в насыщенном водном растворе полисульфида аммония растворяется с образованием комплексов.
Получают сплавлением стехиометрических составов олова и серы, осаждением из водных растворов солей Sn(II) с H2S в присутствии H2SO4, взаимодействием расплавленного SnCl2 с серой. Монокристаллы и эпитаксиальные пленки выращивают химическим осаждением из газовой фазы, методами химических транспортных реакций, монокристаллы — также направленной кристаллизацией из расплава. SnS — также весовая форма при определении Sn 2+ , катализатор полимеризации, используется для получения править] Нахождение в природе
В природе представлен редким минералом герценбергидом.
Моносульфид олова применяется как полупроводниковый материал для фоторезисторов и фотодиодов.
H + | Li + | K + | Na + | NH4 + | Ba 2+ | Ca 2+ | Mg 2+ | Sr 2+ | Al 3+ | Cr 3+ | Fe 2+ | Fe 3+ | Ni 2+ | Co 2+ | Mn 2+ | Zn 2+ | Ag + | Hg 2+ | Hg2 2+ | Pb 2+ | Sn 2+ | Cu + | Cu 2+ | |
OH − | P | P | P | — | P | М | Н | М | Н | Н | Н | — | Н | Н | Н | Н | Н | — | — | Н | Н | Н | Н | |
F − | P | Н | P | P | Р | М | Н | Н | М | Р | Н | Н | Н | Р | Р | М | Р | Р | М | М | Н | Р | Н | Р |
Cl − | P | P | P | P | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Н | Р | Н | М | — | Н | Р |
Br − | P | P | P | P | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Н | М | Н | М | Р | H | Р |
I − | P | P | P | P | Р | Р | Р | Р | Р | Р | ? | Р | — | Р | Р | Р | Р | Н | Н | Н | Н | М | Н | — |
S 2− | P | P | P | P | — | Р | М | Н | Р | — | — | Н | — | Н | Н | Н | Н | Н | Н | — | Н | Н | Н | Н |
SO3 2− | P | P | P | P | Р | М | М | М | Н | ? | ? | М | ? | Н | Н | Н | М | Н | Н | Н | Н | ? | Н | ? |
SO4 2− | P | P | P | P | Р | Н | М | Р | Н | Р | Р | Р | Р | Р | Р | Р | Р | М | — | Н | Н | Р | Р | Р |
NO3 − | P | P | P | P | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | — | Р | — | Р | Р |
NO2 − | P | P | P | P | Р | Р | Р | Р | Р | ? | ? | ? | ? | Р | М | ? | ? | М | ? | ? | ? | ? | ? | ? |
PO4 3− | P | Н | P | P | — | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | Н | ? | Н | Н | Н | Н |
CO3 2− | М | Р | P | P | Р | Н | Н | Н | Н | — | — | Н | — | Н | Н | — | Н | Н | — | Н | — | — | ? | — |
CH3COO − | P | Р | P | P | Р | Р | Р | Р | Р | — | Р | Р | — | Р | Р | Р | Р | Р | Р | М | Р | — | Р | Р |
CN − | P | Р | P | P | Р | Р | Р | Р | Р | ? | Н | Н | — | Н | Н | Н | Н | Н | Р | Н | Р | — | — | Н |
SiO3 2− | H | Н | P | P | ? | Н | Н | Н | Н | ? | ? | Н | ? | ? | ? | Н | Н | ? | ? | ? | Н | ? | ? | ? |
Wikimedia Foundation . 2010 .
Сульфид олова(IV) — У этого термина существуют и другие значения, см. Сульфид олова. Сульфид олова(IV) (дисульфид олова, муссивное золото) (SnS2) соединение серы и олова, используется в качестве краски, имитирующей позолоту. Содержание 1 Получение 2 Физические … Википедия
Сульфид олова — Известны два стабильных сульфида олова: Моносульфид олова SnS Дисульфид олова SnS2 … Википедия
сульфид олова(II) — сернистое олово(II) … Cловарь химических синонимов I
ОЛОВА СУЛЬФИДЫ — ОЛОВА СУЛЬФИДЫ. Сульфид SnS коричневые кристаллы в природе редкий минерал герценбергит; компонент подшипникового материала, катализатор полимеризации. Дисульфид SnS2 золотисто желтые кристаллы, входит в состав красок, имитирующих позолоту (… … Большой Энциклопедический словарь
ОЛОВА СУЛЬФИДЫ — Сульфид SnS коричневые кристаллы, в природе редкий минерал гсрценбергит; компонент подшипникового материала, катализатор полимеризации. Дисульфид SnS2 золотисто жёлтые кристаллы, входит в состав красок, имитирующих позолоту (сусальное золото) … Естествознание. Энциклопедический словарь
олова сульфиды — Сульфид SnS коричневые кристаллы, в природе редкий минерал герценбергит; компонент подшипникового материала, катализатор полимеризации. Дисульфид SnS2 золотисто жёлтые кристаллы, входит в состав красок, имитирующих позолоту; см. также… … Энциклопедический словарь
олова(II) сульфид — alavo(II) sulfidas statusas T sritis chemija formulė SnS atitikmenys: angl. stannous sulfide; tin(II) sulfide rus. олова(II) сульфид; олово сернистое … Chemijos terminų aiškinamasis žodynas
олова(IV) сульфид — alavo(IV) sulfidas statusas T sritis chemija formulė SnS₂ atitikmenys: angl. mosaic gold; stannic sulfide; tin bronze; tin disulfide; tin(IV) sulfide rus. олова(IV) сульфид; олово сернистое ryšiai: sinonimas – alavo disulfidas sinonimas – auksinė … Chemijos terminų aiškinamasis žodynas
Фторид олова(II) — У этого термина существуют и другие значения, см. Фторид олова. Фторид олова(II) … Википедия
Оксид олова(II) — Оксид олова(II) … Википедия
Источник
Сульфид олова II | |
---|---|
Систематическое наименование | Сульфид олова II |
Хим. формула | SnS |
Рац. формула | Sn1−δS1+δ, 0 151 г/моль |
Энтальпия | |
• образования | −108 кДж/моль |
Рег. номер CAS | 1314-95-0 |
PubChem | 426379 |
Рег. номер EINECS | 215-248-7 |
SMILES | |
ChemSpider | 377250 |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. |
Сульфид олова II (моносульфид олова) — соединение олова и серы с формулой SnS. Тёмно-коричневый порошок, в компактном состоянии кристаллы с металлическим блеском. Важный полупроводник.
Моносульфид олова — нестехиометрическое соединение, где 0 −2 ат.% серы.
Существует в двух модификациях α и β, температура перехода α→β 605 °C, ΔH перехода α→β 0,7 кДж/моль.
ΔG образования (α-SnS): −108 кДж/моль.
ΔH возгонки 220 кДж/моль; сублимируется без разложения. Уравнение температурной зависимости давления пара: lg p(Па) = −10600/T + 12,27.
Температурный коэффициент линейного расширения 14,1⋅10 −6 К −1 . Теплопроводность 0,113 Вт/(см·К).
Полупроводник обычно p-типа, эффективная масса дырок вдоль осей а, b, с: Mа = Mb = 0,2 me, Mс = 1,0 me (me — масса свободного электрона); температурный коэффициент ΔE: −4,8⋅10 −4 К −1 .
Нерастворим в воде и разбавленных минеральных кислотах, растворяется с разложением в концентрированных серной и азотной кислотах, в насыщенном водном растворе полисульфида аммония растворяется с образованием комплексов.
Получают сплавлением стехиометрических составов олова и серы, осаждением из водных растворов солей Sn(II) с H2S в присутствии H2SO4, взаимодействием расплавленного SnCl2 с серой. Монокристаллы и эпитаксиальные плёнки выращивают химическим осаждением из газовой фазы, методами химических транспортных реакций, монокристаллы — также направленной кристаллизацией из расплава. SnS — также весовая форма при определении Sn 2+ , катализатор полимеризации, используется для получения SnO2.
В природе представлен редким минералом герценбергитом.
Моносульфид олова применяется как полупроводниковый материал для фоторезисторов и фотодиодов.
Источник
➤