Меню

Вероятность того что шарики одного цвета



Решение задач про выбор шаров из урны

Общая постановка задачи примерно* следующая:

В урне находится $K$ белых и $N-K$ чёрных шаров (всего $N$ шаров). Из нее наудачу и без возвращения вынимают $n$ шаров. Найти вероятность того, что будет выбрано ровно $k$ белых и $n-k$ чёрных шаров.

По классическому определению вероятности, искомая вероятность находится по формуле гипергеометрической вероятности (см. пояснения тут):

*Поясню, что значит «примерно»: шары могут выниматься не из урны, а из корзины, или быть не черными и белыми, а красными и зелеными, большими и маленькими и так далее. Главное, чтобы они были ДВУХ типов, тогда один тип вы считаете условно «белыми шарами», второй — «черными шарами» и смело используете формулу для решения (поправив в нужных местах текст конечно:)).

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач про шары в схеме гипергеометрической вероятности, узнайте, как использовать Excel для решения типовых задач.

Расчетный файл Эксель из видео можно бесплатно скачать и использовать для решения своих задач.

Примеры решений задач о выборе шаров

Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.

Подставляем в формулу (1) значения: $K=10$, $N-K=8$, итого $N=10+8=18$, выбираем $n=5$ шаров, из них должно быть $k=2$ белых и соответственно, $n-k=5-2=3$ черных. Получаем:

Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?

Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.

Подставляем в формулу (1) значения: $K=5$ (белых шаров), $N-K=5$ (красных шаров), итого $N=5+5=10$ (всего шаров в урне), выбираем $n=2$ шара, из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ красных. Получаем:

Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?

Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
$A = $ (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: $A=A_1+A_2$, где
$A_1 = $ (Выбраны 2 белых шара),
$A_2 = $ (Выбраны 2 черных шара).

Выпишем значения параметров: $K=4$ (белых шаров), $N-K=2$ (черных шаров), итого $N=4+2=6$ (всего шаров в корзине). Выбираем $n=2$ шара.

Для события $A_1$ из них должно быть $k=2$ белых и соответственно, $n-k=2-2=0$ черных. Получаем:

Для события $A_2$ из выбранных шаров должно оказаться $k=0$ белых и $n-k=2$ черных. Получаем:

Тогда вероятность искомого события (вынутые шары одного цвета) есть сумма вероятностей этих событий:

Источник

теория-вероятностей — Вероятность, что все вынутые шары одного цвета

В первой урне 3 белых и 7 черных шаров во второй 6 белых и 4 черных шара. Из первой урны случайно достают 3 шара. Из второй случайно достают три шара. Найти вероятность того что:

  • а) Все вынутые шары одного цвета.
  • б) Только три белых шара.
  • в) Хотя бы один белый шар.

задан 24 Май ’14 16:12

@MrDarkAngel, Если вы получили исчерпывающий ответ, отметьте его как принятый.

1 ответ

а) $%\frac3<10>\cdot\frac29\cdot\frac18\times\frac6<10>\cdot\frac59\cdot\frac48+\frac7<10>\cdot\frac69\cdot\frac58\times\frac4<10>\cdot\frac39\cdot\frac28$% (вероятность того, что все белые плюс вероятность того, что все чёрные).

в) $%1-\frac7<10>\cdot\frac69\cdot\frac58\times\frac4<10>\cdot\frac39\cdot\frac28$% (из единицы вычитаем вероятность того, что все шары чёрные).

б) Если имелось в виду, что белых шаров ровно три, то надо сложить вероятности нескольких событий, находя их по тому же принципу. Там возможны случаи 3+0, 2+1, 1+2, 0+3 (по количеству белых шаров, извлечённых из той и другой урны). Поэтому надо сложить между собой четыре произведения.

Все вычисления упрощаются с учётом того, что знаменатели у всех дробей будут одинаковыми.

отвечен 24 Май ’14 16:32

falcao
258k ● 2 ● 37 ● 50

Большое спасибо))) Можно ли попросить вас по возможности более подробно описать метод решения)))

Принцип решения таких задач подробно описан в учебниках. Возьмите, например, книгу Гмурмана и посмотрите разбор задач этого типа в начальных главах. Это самые основы теории вероятностей. Я могу только два слова сказать в качестве пояснения основной идеи. Вот самое первое произведение $%\frac3<10>\cdot\frac29\cdot\frac18$%. Первая дробь — вероятность взять белый шар, когда их 3, а всего шаров 10. Пусть мы взяли такой шар и берём второй. Белых осталось 2, а всего шаров 9. Вероятность равна 2/9. И так далее. Это элементарные приёмы, и с ними лучше ознакомиться по книгам.

Спасибо) С остальными задачами вы не можете помочь)))

Источник

Задачи про шары

Пример 1. В первой урне: три красных, один белый шара. Во второй урне: один красный, три белых шара. Наугад бросают монету: если герб – выбирают из первой урны, в противном случае– из второй.
Решение:
а) вероятность того, что достали красный шар
A – достали красный шар
P1 – выпал герб, P2 — иначе

Пример 2. В ящике 4 шара. Могут быть: только белые, только черные или белые и черные. (Состав неизвестен).
Решение:
A – вероятность появления белого шара
а) Все белые:
(вероятность того, что попался один из трех вариантов, где есть белые)
(вероятность появления белого шара, где все белые)

б) Вытащили, где все черные



в) вытащили вариант, где все белые или/и черные

— хотя бы один из них белый

Pа+Pб+Pв =

Пример 3 . В урне 5 белых и 4 черных шара. Из нее вынимают подряд 2 шара. Найти вероятность того, что оба шара белые.
Решение:
5 белых, 4 черных шара
P(A1) – вынули белый шар

P(A2) – вероятность того, что второй шар тоже белый

P(A) – подряд выбрали белые шары

Пример 3а . В пачке 2 фальшивых и 8 настоящих денежных купюр. Из пачки вытянули 2 купюры подряд. Найти вероятность что обе они фальшивые.
Решение:
P(2) = 2/10*1/9 = 1/45 = 0.022

Читайте также:  Дизайн ногтей цвет зеленый с красным

Пример 4. Имеется 10 урн. В 9 урнах по 2 черных и 2 белых шара. В 1 урне 5 белых и 1 черный. Из урны, взятой наугад, вынули шар.
Решение:
P(A) — ? белый шар взят из урны, где 5 белых
B – вероятность того, что вынули из урны, где 5 белых
, — вынули из других
C1 – вероятность появления белого шара в 9 ур.

С2 – вероятность появления белого шара, где их 5

P(A)= P(B1) P(C1)+P(B2) P(C2)

Пример 5. 20 цилиндрических валиков и 15 конусообразных. Сборщик берет 1 валик, а затем еще один.
Решение:
а) оба валика цилиндрические
P(Ц1)=; P(Ц2)=
Ц1 – первый цилиндр, Ц2 – второй цилиндр
P(A)=P(Ц1)P(Ц2) =
б) Хотя бы один цилиндр
K1 – первый конусообр.
K2 — второй конусообр.
P(B)=P(Ц1)P(K2)+P(Ц2)P(K1)+P(Ц1)P(Ц2)
;

Пример 6. В ящике 10 стандартных деталей и 5 бракованных.
Наугад извлекают три детали
а) Из них одна бракованная
Pn(K)=Cn k ·p k ·q n-k ,
P – вероятность бракованных изделий

q – вероятность стандартных деталей

n=3, три детали


Пример 7 . В 1-й урне по 3 белых и черных шара, а во 2-й — 3 белых и 4 черных. Из 1-й урны во 2-ю не глядя перекладывают 2 шара, а затем из 2-й вытягивают 2 шара. Какова вероятность, что они разных цветов?
Решение:
При перекладывании шаров из первой урны возможны следующие варианты:
а) вынули за подряд 2 белых шара
PББ 1 =
На втором шаге всегда будет на один шар меньше, поскольку на первом шаге уже вынули один шар.
б) вынули один белый и один черный шар
Ситуация, когда первым вынули белый шар, а потом черный
PБЧ=
Ситуация, когда первым вынули черный шар, а потом белый
PЧБ=
Итого: PБЧ 1 =
в) вынули за подряд 2 черных шара
PЧЧ 1 =
Поскольку из первой урны переложили во вторую урну 2 шара, то общей количество шаров во второй урне будет 9 (7 + 2). Соответственно, будем искать все возможные варианты:
а) из второй урны вынули сначала белый, потом черный шар

Пример 7а . Из 1-ой урны, содержащей 5 белых и 3 черных шара наугад переложили 2 шара во 2-ую урну, содержащую 2 белых и 6 черных шаров. Затем из 2-ой урны наугад извлекли 1 шар.
1) Какова вероятность того, что извлеченный из 2-ой урны шар оказался белым?
2) Шар извлеченный из 2-ой урны оказался белым. Вычислите вероятность того, что из 1-ой урны во 2-ую были переложены шары разного цвета.
Решение.
1) Событие А — извлеченный из 2-ой урны шар оказался белым. Рассмотрим следующие варианты наступления этого события.
а) Из первой урны во вторую положили два белых шара: P1(бб) = 5/8*4/7 = 20/56.
Всего во второй урне 4 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(4) = 20/56*(2+2)/(6+2) = 80/448
б) Из первой урны во вторую положили белый и черный шары: P1(бч) = 5/8*3/7+3/8*5/7 = 30/56.
Всего во второй урне 3 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(3) = 30/56*(2+1)/(6+2) = 90/448
в) Из первой урны во вторую положили два черных шара: P1(чч) = 3/8*2/7 = 6/56.
Всего во второй урне 2 белых шара. Тогда вероятность извлечения белого шара из второй урны равна P2(2) = 6/56*2/(6+2) = 12/448
Тогда вероятность того, что извлеченный из 2-ой урны шар оказался белым равна:
P(A) = 80/448 + 90/448 + 12/448 = 13/32

2) Шар извлеченный из 2-ой урны оказался белым, т.е. полная вероятность равна P(A)=13/32.
Вероятность того, что во вторую урну были переложены шары разного цвета (черный и белый) и был выбран белый: P2(3) = 30/56*(2+1)/(6+2) = 90/448
P = P2(3)/ P(A) = 90/448 / 13/32 = 45/91

Пример 7б . В первой урне 8 белых и 3 черных шара, во второй 5 белых и 3 черных. Из первой наудачу выбирают один шар, а из второй два шара. После этого из выбранных трех шаров наудачу берут один шар. Этот последний шар оказался черным. Найти вероятность того, что из первой урны был выбран белый шар.
Решение.
Рассмотрим все варианты события А – из трех шаров, вынутый шар оказался черным. Каким образом могло произойти, что среди трех шаров оказался черный?
а) Из первой урны вынули черный шар, из второй урны вынули два белых шара.
P1 = (3/11)(5/8*4/7) = 15/154
б) Из первой урны вынули черный шар, из второй урны вынули два черных шара.
P2 = (3/11)(3/8*2/7) = 9/308
в) Из первой урны вынули черный шар, из второй урны вынули один белый и один черный шара.
P3 = (3/11)(3/8*5/7+5/8*3/7) = 45/308
г) Из первой урны вынули белый шар, из второй урны вынули два черных шара.
P4 = (8/11)(3/8*2/7) = 6/77
д) Из первой урны вынули белый шар, из второй урны вынули один белый и один черный шара.
P5 = (8/11)( 3/8*5/7+5/8*3/7) = 30/77
Полная вероятность равна: P = P1+P2+ P3+P4+P5 = 15/154+9/308+45/308+6/77+30/77 = 57/77
Вероятность того, что из белой урны был выбран белый шар, равна:
Pб(1) = P4 + P5 = 6/77+30/77 = 36/77
Тогда вероятность того, что из первой урны был выбран белый шар при условии, что из трех шаров был выбран черный, равна:
Pч = Pб(1)/P = 36/77 / 57/77 = 36/57

Пример 7в . В первой урне 12 белых и 16 черных шаров, во второй 8 белых и 10 черных. Одновременно из 1-ой и 2-ой урны вытаскивают по шару, перемешивают и возвращают по одному в каждую урну. Затем из каждой урны вытаскивают по шару. Они оказались одного цвета. Определить вероятность того, что в 1-ой урне осталось столько же белых шаров, сколько было в начале.

Решение.
Событие А — одновременно из 1-ой и 2-ой урны вытаскивают по шару.
Вероятность вытащить белый шар из первой урны: P1(Б) = 12/(12+16) = 12/28 = 3/7
Вероятность вытащить черный шар из первой урны: P1(Ч) = 16/(12+16) = 16/28 = 4/7
Вероятность вытащить белый шар из второй урны: P2(Б) = 8/18 = 4/9
Вероятность вытащить черный шар из второй урны: P2(Ч) = 10/18 = 5/9

Событие А произошло. Событие В — из каждой урны вытаскивают по шару. После перемешивания, вероятность возвращения шара в урну белого или черного шара равна ½.
Рассмотрим варианты события В — они оказались одного цвета.

Читайте также:  Платье меняет цвет кто как видит

Для первой урны
1) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ББ/А=Б) = ½ * 12/28 * 3/7 = 9/98
2) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ББ/А=Ч) = ½ * 13/28 * 4/7 = 13/98
3) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(БЧ/А=Б) = ½ * 16/28 * 3/7 = 6/49
4) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(БЧ/А=Ч) = ½ * 15/28 * 4/7 = 15/98
5) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ЧБ/А=Б) = ½ * 11/28 * 3/7 = 33/392
6) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ЧБ/А=Ч) = ½ * 12/28 * 4/7 = 6/49
7) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(ЧЧ/А=Б) = ½ * 17/28 * 3/7 = 51/392
8) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(ЧЧ/А=Ч) = ½ * 16/28 * 4/7 = 8/49

Для второй урны
1) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ББ/А=Б) = ½ * 8/18 * 3/7 = 2/21
2) в первую урну положили белый шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ББ/А=Ч) = ½ * 9/18 * 4/7 = 1/7
3) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(БЧ/А=Б) = ½ * 10/18 * 3/7 = 5/42
4) в первую урну положили белый шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(БЧ/А=Ч) = ½ * 9/18 * 4/7 = 1/7
5) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен белый шар, P1(ЧБ/А=Б) = ½ * 7/18 * 3/7 = 1/12
6) в первую урну положили черный шар, и вытащили белый, при условии, что ранее был вытащен черный шар, P1(ЧБ/А=Ч) = ½ * 8/18 * 4/7 = 8/63
7) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен белый шар, P1(ЧЧ/А=Б) = ½ * 11/18 * 3/7 = 11/84
8) в первую урну положили черный шар, и вытащили черный, при условии, что ранее был вытащен черный шар, P1(ЧЧ/А=Ч) = ½ * 10/18 * 4/7 = 10/63

Шары оказались одного цвета:
а) белые
P1(Б) = P1(ББ/А=Б) + P1(ББ/А=Ч) + P1(ЧБ/А=Б) + P1(ЧБ/А=Ч) = 9/98 + 13/98 + 33/392 + 6/49 = 169/392
P2(Б) = P1(ББ/А=Б) + P1(ББ/А=Ч) + P1(ЧБ/А=Б) + P1(ЧБ/А=Ч) = 2/21+1/7+1/12+8/63 = 113/252
б) черный
P1(Ч) = P1(БЧ/А=Б) + P1(БЧ/А=Ч) + P1(ЧЧ/А=Б) + P1(ЧЧ/А=Ч) = 6/49 + 15/98 + 51/392 + 8/49 = 223/392
P2(Ч) = P1(БЧ/А=Б) + P1(БЧ/А=Ч) + P1(ЧЧ/А=Б) + P1(ЧЧ/А=Ч) =5/42+1/7+11/84+10/63 = 139/252

P = P1(Б)* P2(Б) + P1(Ч)* P2(Ч) = 169/392*113/252 + 223/392*139/252 = 5/42

Пример 7г . В первом ящике 5 белых и 4 синих шарика, во втором 3 и 1, а в третьем — 4 и 5 соответственно. Наугад выбран ящик и из него вытащенный шарик, оказался синий. Какова вероятность того, что этот шарик со второго ящика?

Решение.
A — событие извлечения синего шарика. Рассмотрим все варианты исхода такого события.
H1 — вытащенный шарик из первого ящика,
H2 — вытащенный шарик из второго ящика,
H3 — вытащенный шарик из третьего ящика.
P(H1) = P(H2) = P(H3) = 1/3
Согласно условию задачи условные вероятности события А равны:
P(A|H1) = 4/(5+4) = 4/9
P(A|H2) = 1/(3+1) = 1/4
P(A|H3) = 5/(4+5) = 5/9
P(A) = P(H1)*P(A|H1) + P(H2)*P(A|H2) + P(H3)*P(A|H3) = 1/3*4/9 + 1/3*1/4 + 1/3*5/9 = 5/12
Вероятность того, что этот шарик со второго ящика равна:
P2 = P(H2)*P(A|H2) / P(A) = 1/3*1/4 / 5/12 = 1/5 = 0.2

Пример 8 . В пяти ящиках с 30 шарами в каждом содержится по 5 красных шаров (это ящик состава H1), в шести других ящиках с 20 шарами в каждом — по 4 красных шара (это ящик состава H2). Найти вероятность того, что наугад взятый красный шар содержится в одном из первых пяти ящиков.
Решение: Задача на применение формулы полной вероятности.

Пример 9 . В урне находятся 2 белых, 3 черных и 4 красных шаров. Наудачу вынимают три шара. Какова вероятность, что хотя бы два шара будут одного цвета?
Решение. Всего возможны три варианта исхода событий:
а) среди трех вытащенных шаров оказалось хотя бы два белых.
Pб(2) = P
Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 3 шара из 9:

Найдем вероятность того, что среди выбранных 3 шаров 2 белых.

Количество вариантов выбора из 2 белых шаров:

Количество вариантов выбора из 7 других шаров третий шар:

б) среди трех вытащенных шаров оказалось хотя бы два черных (т.е. или 2 черных или 3 черных).
Найдем вероятность того, что среди выбранных 3 шаров 2 черных.

Количество вариантов выбора из 3 черных шаров:

Количество вариантов выбора из 6 других шаров одного шара:


P = 0.214
Найдем вероятность того, что все выбранные шары черные.

Pч(2) = 0.214+0.0119 = 0.2259

в) среди трех вытащенных шаров оказалось хотя бы два красных (т.е. или 2 красных или 3 красных).
Найдем вероятность того, что среди выбранных 3 шаров 2 красных.

Количество вариантов выбора из 4 черных шаров:

Количество вариантов выбора из 5 белых шаров остальные 1 белых:


Найдем вероятность того, что все выбранные шары красные.

Pк(2) = 0.357 + 0.0476 = 0.4046
Тогда вероятность, что хотя бы два шара будут одного цвета равна: P = Pб(2) + Pч(2) + Pк(2) = 0.0833 + 0.2259 + 0.4046 = 0.7138

Пример 10 . В первой урне содержится 10 шаров, из них 7 белых; во второй урне 20 шаров, из них 5 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.
Решение. Вероятность того, что из первой урны извлекли белый шар, равна P(б)1 = 7/10. Соответственно, вероятность извлечения черного шара равна P(ч)1 = 3/10.
Вероятность того, что из второй урны извлекли белый шар, равна P(б)2 = 5/20 = 1/4. Соответственно, вероятность извлечения черного шара равна P(ч)2 = 15/20 = 3/4.
Событие А — из двух шаров взят белый шар
Рассмотрим варианты исхода события А .

  1. из первой урны вытащили белый шар, из второй урны вытащили белый шар. Затем из этих двух шаров вытащили белый шар. P1 = 7/10*1/4 = 7/40
  2. из первой урны вытащили белый шар, из второй урны вытащили черный шар. Затем из этих двух шаров вытащили белый шар. P2 = 7/10*3/4 = 21/40
  3. из первой урны вытащили черный шар, из второй урны вытащили белый шар. Затем из этих двух шаров вытащили белый шар. P3 = 3/10*1/4 = 3/40
Читайте также:  С чем носить юбку цвета оливы

Таким образом, вероятность можно найти как сумму вышеуказанных вероятностей.
P = P1 + P2 + P3 = 7/40 + 21/40 + 3/40 = 31/40

Пример 11 . В ящике n теннисных мячей. Из них игранных m . Для первой игры наудачу взяли два мяча и после игры их положили обратно. Для второй игры также наудачу взяли два мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами?
Решение. Рассмотрим событие А – игра во второй раз проводилась новыми мячами. Посмотрим какие события могут привести к этому.
Обозначим через g = n-m, количество новых мячей до вытаскивания.
а) для первой игры вытащили два новых мяча.
P1 = g/n*(g-1)/(n-1) = g(g-1)/(n(n-1))
б) для первой игры вытащили один новый мяч и один уже игранный.
P2 = g/n*m/(n-1) + m/n*g/(n-1) = 2mg/(n(n-1))
в) для первой игры вытащили два игранных мяча.
P3 = m/n*(m-1)/(n-1) = m(m-1)/(n(n-1))

Рассмотрим события второй игры.
а) Вытащили два новых мяча, при условии P1: поскольку ранее для первой игры уже вытащили новые мячи, то для второй игры их количество уменьшилось на 2, g-2.
P(A/P1) = (g-2)/n*(g-2-1)/(n-1)*P1 = (g-2)/n*(g-2-1)/(n-1)*g(g-1)/(n(n-1))
б) Вытащили два новых мяча, при условии P2: поскольку ранее для первой игры уже вытащили один новый мяч, то для второй игры их количество уменьшилось на 1, g-1.
P(A/P2) =(g-1)/n*(g-2)/(n-1)*P2 = (g-1)/n*(g-2)/(n-1)*2mg/(n(n-1))
в) Вытащили два новых мяча, при условии P3: поскольку ранее для первой игры не использовали новых мячей, то для второй игры их количество не изменилось g.
P(A/P3) = g/n*(g-1)/(n-1)*P3 = g/n*(g-1)/(n-1)*m(m-1)/(n(n-1))

Полная вероятность P(A) = P(A/P1) + P(A/P2) + P(A/P3) = (g-2)/n*(g-2-1)/(n-1)*g(g-1)/(n(n-1)) + (g-1)/n*(g-2)/(n-1)*2mg/(n(n-1)) + g/n*(g-1)/(n-1)*m(m-1)/(n(n-1)) = (n-2)(n-3)(n-m-1)(n-m)/((n-1)^2*n^2)
Ответ: P(A)=(n-2)(n-3)(n-m-1)(n-m)/((n-1)^2*n^2)

Пример 12 . В первом, втором и третьем ящиках находится по 2 белых и 3 черных шара, в четвертом и пятом по 1 белому и 1 черному шару. Случайно выбирается ящик и из него извлекается шар. Какова условная вероятность, что выбран четвертый или пятый ящик, если извлеченный шар — белый?
Решение.
Вероятность выбора каждого ящика равна P(H) = 1/5.
Рассмотрим условные вероятности события А — извлечения белого шара.
P(A|H=1) = 2/5
P(A|H=2) = 2/5
P(A|H=3) = 2/5
P(A|H=4) = ½
P(A|H=5) = ½
Полная вероятность извлечения белого шара:
P(A) = 2/5*1/5 + 2/5*1/5 +2/5*1/5 +1/2*1/5 +1/2*1/5 = 0.44
Условная вероятность, что выбран четвертый ящик
P(H=4|A) = 1/2*1/5 / 0.44 = 0.2273
Условная вероятность, что выбран пятый ящик
P(H=5|A) = 1/2*1/5 / 0.44 = 0.2273
Итого, условная вероятность, что выбран четвертый или пятый ящик равна
P(H=4, H=5|A) = 0.2273 + 0.2273 = 0.4546

Пример 13 . В урне было 7 белых и 4 красных шара. Затем в урну положили ещё один шар белого или красного или черного цвета и после перемешивания вынули один шар. Он оказался красным. Какова вероятность, что был положен а) красный шар? б) черный шар?
Решение.
а) красный шар
Событие A — вытащили красный шар. Событие H — положили красный шар. Вероятность, того в урну был положен красный шар P(H=K) = 1 /3
Тогда P(A|H=K)= 1 /3* 5 /12 = 5 /36 = 0.139
б) черный шар
Событие A — вытащили красный шар. Событие H — положили черный шар.
Вероятность, того в урну был положен черный шар P(H=Ч) = 1 /3
Тогда P(A|H=Ч)= 1 /3* 4 /12 = 1 /9 = 0.111

Пример 14 . Имеются две урны с шарами. В одной 10 красных и 5 синих шаров, во второй 5 красных и 7 синих шаров. Какова вероятность того, что из первой урны наудачу будет вынут красный шар, а из второй синий?
Решение. Пусть событие A1 — из первой урны вынут красный шар; A2 — из второй урны вынут синий шар:
,
События A1 и A2 независимые. Вероятность совместного появления событий A1 и A2 равна

Пример 15 . Имеется колода карт (36 штук). Вынимаются наудачу две карты подряд. Какова вероятность того, что обе вынутые карты будут красной масти?
Решение. Пусть событие A1 — первая вынутая карта красной масти. Событие A2 — вторая вынутая карта красной масти. B — обе вынутые карты красной масти. Так как должны произойти и событие A1, и событие A2 , то B = A1 · A2. События A1 и A2 зависимые, следовательно, P(B) :
,
Отсюда

Пример 16 . В двух урнах находятся шары, отличающиеся только цветом, причем в первой урне 5 белых шаров, 11 черных и 8 красных, а во второй соответственно 10, 8, 6 шаров. Из обеих урн наудачу извлекается по одному шару. Какова вероятность, что оба шара одного цвета?
Решение. Пусть индекс 1 означает белый цвет, индекс 2 — черный цвет; 3 — красный цвет. Пусть событие Ai — из первой урны извлекли шар i-го цвета; событие Bj — из второй урны извлекли шар j -го цвета; событие A — оба шара одного цвета.
A = A1 · B1 + A2 · B2 + A3 · B3. События Ai и Bj независимые, а Ai · Bi и Aj · Bj несовместные при i ≠ j . Следовательно,
P(A)=P(A1)·P(B1)+P(A2)·P(B2)+P(A3)·P(B3) =

Пример 17 . Из урны с 3-мя белыми и 2-мя черными шары вытаскиваются по одному до появления черного. Найдите вероятность того, что из урны будет вытащено 3 шара? 5 шаров?
Решение.
1) вероятность того, что из урны будет вытащено 3 шара (т.е. третий шар будет черным, а первые два — белыми).
P=3/5*2/4*2/3=1/5
2) вероятность того, что из урны будет вытащено 5 шаров
такая ситуация не возможна, т.к. всего 3 белых шара.
P = 0

Источник